\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020 (CBCSS-PG)

(Regular/Supplementary/Improvement)
CC19P MTH1C03 - REAL ANALYSIS-I
(Mathematics)
(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage
PART A
Answer all questions. Each question carries 1 weightage.

1. Prove that every neighbourhood is an open set.
2. Define Cantor set.
3. If E is an infinite subset of a compact set K, then prove that E has a limit point in K.
4. Define Riemann-stieltjes Integral of a real bounded function f with respect to a monotonically increasing function α over $[a, b]$.
5. Let f be defined on $[a, b]$ and are differentiable at a point $x \in[a, b]$, then prove that f is continuous at x.
6. Let f be defined for all real x, and suppose that $|f(x)-f(y)| \leq(x-y)^{2}$ for all real x and y. Prove that f is a constant.
7. If P^{*} is a refinement of P, then prove that $L(P, f, \alpha) \leq L\left(P^{*}, f, \alpha\right)$ and $U\left(P^{*}, f, \alpha\right) \leq U(P, f, \alpha)$.
8. Define an uncountable set. Prove that the set of all integers is countable.

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

9. Define limit point of a set. Construct a bounded set of real numbers with exactly three limit points.
10. Let A be the set of all sequences whose elements are the digits 0 and 1 . Then prove that this set A is uncountable.(The elements of A are sequences like $1,0,0,1,1, \ldots$)
11. Let p be a limit point of a set E in a metric space, then prove that every neighbourhood of p contains infinitely many points of E.

UNIT II

12. Prove that if f is continuous on $[a, b]$ then $f \in \Re(\alpha)$ on $[a, b]$.
13. If f is monotonic on $[a, b]$ and if α is continuous on $[a, b]$, then prove that $f \in \Re(\alpha)$.
14. Suppose f is continuous on $[a, b], f^{\prime}(x)$ exists at some point $x \in[a, b], g$ is defined on an interval I which contains the range of f, and g is differentiable at the point $f(x)$. If $h(t)=g(f(t))$; $(a \leq t \leq b)$, then h is differentiable at the point $f(x)$, and $h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$.

UNIT III

15. Let $f \in \Re(\alpha)$ on $[a, b]$, and for $a \leq x \leq b$, let $F(x)=\int_{a}^{b} f(t) d t$. Prove that F is continuous on $[a, b]$.
16. Show by an example that the limit of the integral need not be equal to the integral of the limit, even if both are finite.
17. If $\left\{f_{n}\right\}$ is a point wise bounded sequence of complex functions on a countable set E, then show that $\left\{f_{n}\right\}$ has a subsequence $\left\{f_{n_{k}}(x)\right\}$ converges for every $x \in E$.
($6 \times 2=12$ Weightage)

PART C

Answer any two questions. Each question carries 5 weightage.
18. (a) Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
(b) Show that a continuous function maps a connected subset of metric space onto a connected set.
(c) If f is a continuous mapping of a compact metric space X into R^{k}, then prove that $f(X)$ is closed and bounded. Thus, f is bounded
19. (a) Prove that finite set has no limit point.
(b) Prove that compact subset of a metric space is closed.
(c) Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then prove that $f(X)$ is compact
20. (a) Suppose $f \in \Re(\alpha)$ on $[a, b], m \leq t \leq M, \phi$ is continuous on [m, M], and $h(x)=\phi(f(x))$ on $[a, b]$. Then prove that $h \in \Re(\alpha)$ on $[a, b]$.
(b) Assume α increases monotonically and $\alpha^{\prime} \in \Re$ on $[a, b]$. Let f be a bounded real function on $[a, b]$. Then prove that $f \in \Re(\alpha)$ if and only if $f \alpha^{\prime} \in \Re$. In that case Integral $\int_{a}^{b} f d \alpha=$ $\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$
21. State and prove Stone-Weierstrass theorem.

