\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(CBCSS-PG)
(Regular/Supplementary/Improvement)
CC19P STA1 C01 - ANALYTICAL TOOLS FOR STATISTICS - I
(Statistics)
(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

PART A

Answer any four questions. Each question carries 2 weightage.

1. Define the following (a) Directional derivative (b) Total derivative of a multivariable function (c) Riemann integral of a multivariable function.
2. Define limit of a multivariable function and find $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)}$.
3. Define an analytic function and find the analytic function whose real part is $u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$.
4. State Cauchy's theorem for an analytic function and evaluate $\int_{1}^{3} \frac{d z}{(z-4) z}$.
5. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{1+a \sin \theta}$ where $-1<a<1$..
6. State and prove Polar form of Cauchy Riemann equation.
7. Define Laplace transform of a function. Obtain the same of a constant function.

$$
\text { (} 4 \times 2=8 \text { Weightage) }
$$

PART B

Answer any four questions. Each question carries 3 weightage.
8. Define local maxima and minima of a multivariable function. Examine the function $x^{3}+y^{3}-3 x-12 y+20$ for maxima and minima.
9. State and prove Taylors theorem.
10. Explain the different types of singularities and give examples for each.
11. Solve the differential equation $\left(D^{2}+D\right) x=2$, when $x(0)=3$ and $x^{\prime}(0)=1$ where $D x=\frac{d x}{d t}$
12. State residue theorem. Integrate $\int_{c} \frac{e^{3 z}}{\left(z^{2}-2\right)\left(z^{2}-6 z+5\right)} d z$ where c is the circle $|z|=4$ using residue theorem
13. Find the Fourier transform of $f(x)=x$ if $a \leq x \leq b$..
14. Determine the inverse Laplace transform of
(a) $\left(1+t e^{-t}\right)^{2}$
(b) $5 e^{-2 t}+2 e^{-3 t}$.
($4 \times 3=12$ Weightage)

PART C

Answer any two questions. Each question carries 5 weightage.
15. (a) Explain the method of Lagangian multiplier method of finding the optima.
(b) Find the points on the sphere $x^{2}+y^{2}+z^{2}=36$, that are closest and farthest from the point $(1,2,2)$.
16. State and prove the necessary and sufficient condition for a function to be analytic.
17. (a) State and prove Laurent's theorem.
(b) Find Laurents series expansion of $\frac{4}{(z-1)(z+1)}$, specifying the regions.
18. State and prove Poisson's Integral formula.
($2 \times 5=10$ Weightage)

