(Pages: 2)

Name	•••	•••	• •	•	• •	• •	•	•	 	•
Reg. No				•						•

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020 (CUCSS - PG)

CC19P CHE2 C05 - GROUP THEORY AND CHEMICAL BONDING

(Chemistry)

(2019 Admissions - Regular)

Time: Three Hours

Maximum: 30 Weightage

Section A (Short Answer Type)

Answer any *eight* questions. Each question carries 1 weightage.

- 1. Write down the 3×3 matrix for S₂ and find out its equivalent symmetry operation.
- 2. What is rearrangement theorem?
- 3. Draw the structures of three distinct isomers of C₂H₂Cl₂ and determine their point group. Which of them is polar?
- 4. What are orthogonal matrices? What is its property?
- 5. What is Laporte selection rule in terms of group theory?
- 6. Differentiate between SALC and SAGO.
- 7. How will you calculate the π bond order using Huckel theory?
- 8. What is the term symbol for N_2 molecule?
- 9. Show that B_1 and B_2 IR's under C_{2v} point group is mutually orthogonal. (Use the character table in question number 18)
- 10. State and explain Born-Oppenheimer approximation.

(8 × 1 = 8 Weightage)

Section B (Short Essay Question)

Answer any *four* questions. Each question carries 3 weightage.

- 11. A point group has the following irreducible representations: A₁, A₂, B₁, B₂, E₁, E₂. What is the order of the group? How many classes are there in that group? Justify your answer.
- 12. Consider the following sequential changes from A to B and to C. 1) Indicate the point group of each of these structures 2) List out the symmetry elements that are lost or gained during this transformation from A to C.

13. Explain the four different properties of IR's derived from GOT.

- 14. Write a brief note of quantum mechanical treatment of sp³ hybridization
- 15. Discuss the Frost -Hückel circle mnemonic device for cyclic polyenes.
- 16. Explain the rule of mutual exclusion principle using group theory.
- 17. HCHO belongs to C_{2v} point group. Find the allowed electronic transiotions in the C=O group of this molecule.

			$\sigma_v(xz)$			
$\begin{array}{c} A_1 \\ A_2 \\ B_1 \\ B_2 \end{array}$	1 1 1 1	$1 \\ -1 \\ -1$	$1 \\ -1 \\ 1 \\ -1$	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} $	z R_z x, R_y y, R_x	x ² , y ² , z ² xy xz yz
- 2	_				<i>y</i> , - <i>x</i>	$(4 \lor 2 = 12 W)$

 $(4 \times 3 = 12 \text{ Weightage})$

Section C (Essay questions)

Answer any two questions. Each question carries 5 weightage.

- 18. Sate Great Orthogonality Theorem. Using this derive the C_{3V} character table.
- 19. Compare the VB and MO method of bonding applied to H₂. Which is found better? Justify your answer.
- 20. a) Explain the basics of Huckel approximations. How are these justified?
 - b) Obtain the secular determinant for cyclobutadiene, find out the MO and calculate the delocalization energy based on Huckel approximation.
- 21. Consider a general vector v whose base is at the origin of the coordinate system and whose tip is at (x, y, z) in the point group C₂V.
 - a) Derive the set of four 3×3 transformation matrices that constitute the reducible representation by which vector v transforms.
 - b) From this find out the IR for the transformation of x, y, and z under this point group.
 - c) Derive the complete character table for this point group.

 $(2 \times 5 = 10 \text{ Weightage})$
