(Pages: 2)

Name	 • • • •	
Reg. No	 	

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020 (CUCSS - PG)

CC19P MST2 C07 - ESTIMATION THEORY

(Statistics)

(2019 Admissions - Regular)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer any *four* questions. Each question carries 2 weightage.

- 1. Define (i) minimal sufficient statistic and (ii) Ancillary statistics. Illustrate both with an example for each.
- 2. Define an unbiased estimator. Do the unbiased estimators always exist? Justify your claim.
- 3. Describe percentile method for finding consistent estimator.
- 4. Find the moment estimator of the parameters of Gamma distribution.
- 5. Define the terms (i) Prior distribution (ii) Posterior distribution and (iii) Loss functions.
- 6. Explain the construction of Bayesian confidence interval.
- 7. Define (i) shortest expected length confidence interval and (ii) fiducial interval.

(4 x 2 = 8 Weightage)

Part B

Answer any *four* questions. Each carries 3 weightage.

- 8. State and prove Rao Blackwell theorem. Explain its application through an example.
- 9. Define Cramer Rao inequality. Obtain the Cramer Rao lower bound for the variance of the unbiased estimator of μ , when a r.s of size n is taken from $N(\mu, \sigma^2)$.
- 10. Define a consistent estimator. Explain the criteria to choose between two consistent estimators. Illustrate with an example.
- 11. Define a CAN estimator. Establish the invariance property of CAN estimators.
- 12. Obtain the maximum likelihood estimator (m.l.e.) of the parameter θ when a random sample of size n is taken from: (i) f(x, θ) = θx^{θ-1}; 0 < x < 1 and α known.
 (ii) X(θ 1, θ + 1))
- 13. Let $x_1, x_2, ..., x_n$ is a random sample from Poisson (λ). Assuming the prior distribution of λ as exponentially distributed with mean 1, obtain the Bayes estimate of λ .

19P259

14. Describe the construction of $100(1 - \alpha)\%$ confidence interval for the mean of normal population with (i) known variance and (ii) unknown variance.

(4 x 3 = 12 Weightage)

Part C

Answer any two questions. Each question carries 5 weightage.

- 15. (a) If X_1 , X_2 are random samples of size 2 from Poisson (λ), show that $X_1 + X_2$ is sufficient but $X_1 + 2X_2$ is not sufficient.
 - (b) Distinguish between UMVUE and MVB estimator. Construct MVB estimator for the parameter θ when a random sample is taken from the family with probability density function $f(x) = \begin{cases} \theta e^{-\theta x} & when x > 0 \\ 0 & otherwise \end{cases}$
- 16. (a) Prove or disprove : If t is a consistent estimator of θ , then t² is a consistent estimator of θ^2 .
 - (b) If n independent observations $X_1, X_2, ..., X_n$ are drawn from the Poisson distribution with parameter λ , discuss the unbiasedness and consistency of the estimator $T = \frac{2}{n(n+1)} \sum_{i=1}^{n} i X_i$ for λ .
- 17. (a) Show that under some regularity conditions the maximum likelihood estimator is consistent and asymptotically normal.
- 18. (a) Let $x_1, x_2, ..., x_n$ is a random sample from $U(0, \theta)$. Obtain an unbiased confidence interval for θ .
 - (b) Describe the construction of $100(1 \alpha)$ % large sample confidence interval for the variance of Normal population with unknown mean.

(2 x 5 = 10 Weightage)
