(Pages: 2)

Name	• • • • •	••	 •••	 • •	•••	•	•••	•
Reg. No			 	 				•

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020 (CUCSS - PG)

CC19P MTH2 C06 - ALGEBRA II

(Mathematics)

(2019 Admissions - Regular)

Time: Three Hours

Maximum: 30 Weightage

Part A (Short Answer questions) Answer *all* questions. Each question carries 1 weightage.

- 1. Define Maximal ideal and Find all Maximal ideals of Z_6 .
- 2. Does every algebraic extension is finite extension. Justify your answer.
- 3. Prove that set of all algebraic numbers forms a field.
- 4. Find all conjugates of $\sqrt{2} + i$ over Q.
- 5. Find number of isomorphisms from $Q(\sqrt{2})$ to $Q(\sqrt{3})$. Justify your answer.
- 6. Let σ be an automorphism of $Q(\pi)$ that map π onto $-\pi$. Find fixed field of σ .
- 7. Find $\Phi_8(x)$ over Q.
- 8. Show that the polynomial $x^7 1$ is solvable by radicals over Q.

(8 x 1 = 8 Weightage)

Part B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. Let *R* be a commutative ring with unity. Then prove that if *M* is a maximal ideal of *R* then *R*/*M* is a field.
- 10. Prove that trisecting the angle is impossible.
- 11. Let $E = Z_2(\alpha)$ be an extension field of Z_2 containing a zero α of $x^2 + x + 1$. Then write the addition table and multiplication table of *E*.

(2 x 2 = 4 Weightage)

UNIT II

- 12. If *E* is a finite extension of *F*, Then show that $\{E:F\}$ divides [E:F]
- 13. If *K* is a finite extension of *E* and *E* is a finite extension of *F*. Then show that *K* is separable over *F* if and only if *K* is separable over *E* and *E* is separable over *F*.
- 14. Define splitting field. Also find the splitting field of $x^4 2$ over Q.

(2 x 2 = 4 Weightage)

19P201

UNIT III

- 15. Describe the group of the polynomial $x^3 1$ over Q.
- 16. Show that $Q(\sqrt{5}, \sqrt{7})$ is a normal extension over Q.
- 17. Find Galois group of pth cyclotomic extension of Q for a prime p

 $(2 \times 2 = 4 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. (a) Prove that the set of all constructible real numbers forms a subfield *F* of real numbers.
 - (b) State and Prove Kronecker's Theorem.
- 19. (a) Define Perfect field. Prove that every field of characteristic zero is perfect.
 - (b) State and Prove Primitive Element Theorem
- 20. (a) State and Prove Conjugation Isomorphism Theorem
 - (b) If *E* is a splitting field over *F*. Then show that every irreducible polynomial in *F*[x] having a zero in *E* splits in *E*.
- 21. (a) Let *K* be a finite normal extension of *F*, and let *E* be an extension of *F*. where $F \le E \le K$. Then prove that *K* is a finite normal extension of *E* and *G*(*K*/*E*) is precisely the subgroup of *G*(*K*/*F*) consisting of all those automorphisms that leave *E* fixed.
 - (b) Let *F* be a field of characteristic 0 and let $a \in F$. If *K* is the splitting field of

 $x^n - a$ over *F*, then prove that G(K/F) is a solvable group.

(2 x 5 = 10 Weightage)
