\qquad
\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION,APRIL 2020
(CUCSS - PG)
CC18P MT2 C06 - ALGEBRA-II
(Mathematics)
(2018 Admission - Supplementary/Improvement)

Time: 3 Hours

Part A

Answer all questions. Each question carries 1 weightage.

1. Find all prime ideals and all maximal ideals of Z_{6}.
2. Show that the polynomial $x^{3}-2$ has no zeroes in $Q(\sqrt{2})$
3. Find the degree and basis of $\mathrm{Q}(\sqrt{2,} \sqrt{3}, \sqrt{18})$ over Q .
4. Prove that squaring the circle is impossible.
5. Find the primitive $5^{\text {th }}$ root of unity in $\overline{\mathrm{Z}}_{11}$.
6. State Conjugation Isomorphism theorem.
7. Find all conjugates in C of $3+\sqrt{2}$ over Q.
8. Find $[Q(\sqrt{2}, \sqrt{3}): Q]$
9. State isomorphism extension theorem.
10. Let K be a finite normal extension of F and let E be an extension of F, where $F \leq E \leq K \leq F$. Prove that K is a finite normal extension of E.
11. Describe the group of the polynomial of $\mathrm{x}^{4}-1$ over Q .
12. Find $\emptyset_{6}(\mathrm{x})$ over Q .
13. Show that the polynomial $\mathrm{x}^{5}-1$ is solvable by radicals over Q .
14. Determine whether there exist a finite field having 4096 number of elements.
($14 \times 1=14$ Weightage)

Part B

Answer any seven questions Each question carries 2 weightage.
15. Prove that if F is a field, every ideal in $\mathrm{F}[\mathrm{x}]$ is principal.
16. Let R be a finite commutative ring with unity. Show that every prime ideal in R is a maximal ideal.
17. If E is a finite extension field of a field F and K is a finite extension field of E, Prove that K is a finite extension of F and $[K: F]=[K: E][E: F]$.
18. Prove that a finite field $G F\left(p^{n}\right)$ of p^{n} elements exists for every prime power p^{n}.
19. Find a basis for $\mathrm{Q}\left(2^{1 / 2}, 2^{1 / 3}\right)$ over Q .
20. Prove that complex zeros of polynomials with real coefficients occur in conjugate pairs.
21. Let F and F^{\prime} be two algebraic closures of F. Prove that F is isomorphic to F^{\prime} under an isomorphism leaving each element of F fixed.
22. State main theorem of Galois Theory.
23. Prove that the Galois group of the $\mathrm{n}^{\text {th }}$ cyclotomic extension of Q has $\emptyset(n)$ elements and is isomorphic to the group consisting of the positive integers less than n and relatively prime to n under multiplication modulo n.
24. Let F be a field of characteristic zero, and let $F \leq E \leq K \leq F$, where E is a normal extension of F and K is an extension of F by radicals. Prove that $G(E / F)$ is a solvable group.
($7 \times 2=14$ Weightage)

Part C

Answer any two questions. Each question carries 4 weightage.
25. Let F be a field and let $\mathrm{f}(\mathrm{x})$ be a non-constant polynomial in $\mathrm{F}[\mathrm{x}]$. Prove that there exist an extension field E of F and $\alpha \in E$ such that $f(\alpha)=0$
26. Prove that field E, where $F \leq E \leq F$ is a splitting field over F if and only if every automorphism of $\overline{\mathrm{F}}$ leaving F fixed maps E onto itself and thus induces an automorphism of E leaving F fixed.
27. Prove that the regular n - gon is constructable with a compass and a straightedge if and only if all the odd primes dividing n are Fermat primes whose squares do not divide n.
28. Prove that every finite field is perfect.
($2 \times 4=8$ Weightage)

