(Pages: 2)

Name	• • • • •
Reg.No	

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020

(CUCSS - PG)

(Mathematics)

CC19P MTH2 C07 – REAL ANALYSIS II

(2019 Admissions: Regular)

Time: Three Hours

Maximum:30 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Prove that Lebesgue measure is countably additive.
- 2. Prove that if a σ algebra of subsets of \mathbb{R} contains intervals of the form(a, ∞), then it contains all intervals.
- 3. Let g be a measurable real-valued function defined on E and f a continuous real-valued function defined on \mathbb{R} . Prove that $f \circ g$ is a measurable function on E.
- 4. Let *f* be a bounded measurable function on a set of finite measure E. Then prove that f is integrable over E.
- 5. Let *f* be integrable over *E* and *C* a measurable subset of *E*. Show that $\int_C f = \int_E f \chi_C$.
- 6. Let f be integrable over E. Prove that for each $\varepsilon > 0$, there is a set E_0 with $m(E_0) < \infty$ for which $\int_{E^-E_0} |f| < \varepsilon$.
- 7. Prove that every Lipschitz function defined on a closed, bounded interval [a, b] is absolutely continuous on [a, b].
- 8. State and prove Chordal Slope Lemma.

(8 x 1 = 8 Weightage)

PART B

Answer any *two* from each unit . Each question carries 2 weightage

Unit -1

- 9. Show that the union of a countable collection of measurable sets is measurable.
- 10. Prove that any set E of real numbers with positive outer measure contains a subset that fails to be measurable.
- 11. State and prove Lusin's Theorem.

19P202

Unit-2

- 12. Let f be a bounded measurable function on a set of finite measure E. Prove that $\int_{A \cup B} f = \int_A f + \int_B f$ where A and B are disjoint measurable subsets of E.
- 13. Define convergence in measure.

If $\{f_n\} \to f$ in measure on *E*, then prove that there is a subsequence $\{f_{n_k}\}$ that converges point wise a. e. on *E* to *f*.

14. Let *f* be a bounded function on a set of finite measure *E*, then prove that *f* is Lebesgue integrable over *E* if and only if it is measurable.

Unit-3

- 15. Let the function f be monotone on [a, b]. Prove that f is absolutely continuous on [a, b] if and only if $\int_a^b f' = f(b) f(a)$.
- 16. State and prove Jordan's Theorem.
- 17. Let E be a measurable set and 1 ≤ p ≤∞. Suppose {f_n} is a sequence in L^p(E) that converges pointwise a.e. on E to the function f which belongs to L^p(E). Prove that {f_n} → f in L^p(E) if and only if lim_{n→∞} |f_n|^p = ∫_E |f|^p.

(6 x 2 = 12 Weightage)

PART C

Answer any *two* questions. Each question carries 5 weightage.

- 18. Prove that the outer measure of an interval is its length. Hence prove that [0, 1] is uncountable.
- 19. State and prove Vitali Convergence Theorem.
- 20. If the function *f* is monotone on the open interval (*a*, *b*), then prove that it is differentiable almost everywhere on (*a*, *b*).
- 21. Prove that $L^p(E)$ is a normed linear space for $1 \le p \le \infty$.

(2 x 5 = 10 Weightage)
