\qquad
FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020
(CUCSS - PG)

CC17P MT4 E07 / CC18P MT4 E07 - ADVANCED FUNCTIONAL ANALYSIS
 (Mathematics)

(2017 Admission onwards)
Time: Three Hours
Maximum: 36 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Define the transpose F^{\prime} of $F \in B L(X, Y)$. Show that $\left\|F^{\prime}\right\|=\|F\|$
2. State Riesz representation theorem for $C([a, b])$
3. What is meant by moment sequences? Give an example.
4. True or false: If X is a normed space, then every bounded sequence in X^{\prime} has a weak* convergent subsequence. Give reason to your answer.
5. Explain uniform convexity of a normed space. Is a strictly convex normed space always uniformly convex? Justify your answer.
6. Let X be a normed space and $A: X \rightarrow X$. Let $k \in K$ and Y be a proper closed subspace of X such that $(A-k I)(X) \subset Y$. Then show that there is some x in X such that $\|x\|=1$ and $\|A(x)-A(y)\| \geq \frac{|k|}{2}, \forall y \in Y$
7. If X is a normed space and $A \in C L(X)$, then show that every eigen space of A corresponding to a nonzero eigen value of A is finite dimensional.
8. Describe dual X^{\prime} of a normed space X and its norm.
9. Does weak convergence in a Hilbert space always imply convergence. Justify your answer.
10. Briefly explain the existence of adjoint of a bounded linear operator on a Hilbert space H.
11. Let H be a Hilbert space and $A \in B L(H)$. Prove that $\left\|A^{2}\right\|=\|A\|^{2}$, if A is normal.
12. Define numerical range of $A \in B L(H)$. Check whether it is a bounded set or not.
13. State finite dimensional spectral theorem for normal/ self-adjoint operators.
14. Define a Hilbert-Schmidt operator. Show that A^{*} is Hilbert-Schmidt operator if $A \in$ $B L(H)$ is a Hilbert-Schmidt operator.
($14 \times 1=14$ Weightage)

PART B

Answer any seven questions. Each question carries 2 weightage.
15. Let X be a normed space. Show that if X^{\prime} is separable, then so is X.
16. Let $1 \leq p \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. For a fixed $y \in L^{q}$, define $f_{y}: L^{p} \rightarrow \boldsymbol{K}$ by
$f_{y}(x)=\int_{a}^{b} x y d m, x \in L^{p}$. Show that the map $F: L^{q} \rightarrow\left(L^{p}\right)^{\prime}$ defined by $F(y)=f_{y}, \quad y \in L^{q}$, is a linear isometry from L^{q} to $\left(L^{p}\right)^{\prime}$
17. If X is a separable normed space, then prove that every bounded sequence in X^{\prime} has a weak* convergent subsequence.
18. Show that every closed subspace of a reflexive normed space is reflexive.
19. X is a normed space and $A \in C L(X)$. Prove that every nonzero spectral value of A is its eigen value.
20. Show that $\operatorname{dim} Z\left(A^{\prime}-k I\right)=\operatorname{dim} Z(A-k I)<\infty$, for $0 \neq k \in \boldsymbol{K}$, if X is a normed space and $A \in C L(X)$.
21. Let H be a Hilbert space, G be a subspace of H and g be a continuous linear functional on G. Prove that there is a unique continuous linear functional f on H such that $f_{\mid G}=g$ and $\|f\|=\|g\|$.
22. Show that $R(A)=H$ if and only if A^{*} is bounded below, where H is a Hilbert space and $A \in B L(H)$.
23. If H is a Hilbert space and $A \in B L(H)$ is self-adjoint, then show that

$$
\|A\|=\sup \{|\langle A(x), x\rangle|: x \in H,\|x\| \leq 1\}
$$

24. If H is a Hilbert space and $A \in B L(H)$, then prove that $\sigma_{e}(A) \subset \sigma_{a}(A)$ and $\sigma(A)=\sigma_{a}(A) \cup\left\{k: \bar{k} \in \sigma_{e}\left(A^{*}\right)\right\}$.

PART C

Answer any two questions. Each question carries 4 weightage.
25. Let $1 \leq p \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Show that the dual of \boldsymbol{K}^{n} with the norm $\left\|\|_{p}\right.$ is linearly isometric to K^{n} with the norm $\left\|\|_{q}\right.$.
26. State and prove Riesz representation theorem.
27. Let $A \in B L(H)$ and $\omega(A)$ be the numerical range of A. Show that
(a) $k \in \omega(A)$ if and only if $\bar{k} \in \omega\left(A^{*}\right)$
(b) $\sigma_{e}(A) \subset \omega(A)$ and $\sigma(A)$ is contained in the closure of $\omega(A)$.
28. Let A be a nonzero compact self-adjoint operator on a Hilbert space H over \boldsymbol{K}. Show that there exist a finite or infinite sequence $\left(s_{n}\right)$ of nonzero real numbers with $\left|s_{1}\right| \geq\left|s_{2}\right| \geq \cdots$ and an orthonormal set $\left\{u_{1}, u_{2}, \ldots\right\}$ in H such that $A(x)=\sum_{n} s_{n}\left\langle x, u_{n}\right\rangle u_{n}, x \in H$. Also prove that if the set $\left\{u_{1}, u_{2}, \ldots\right\}$ is infinite, then $s_{n} \rightarrow 0$ as $n \rightarrow \infty$.

