(Pages: 2)

Name	
Reg. No	

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020 (CUCSS - PG)

CC17P MT4 E07 / CC18P MT4 E07 – ADVANCED FUNCTIONAL ANALYSIS

(Mathematics)

(2017 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Define the transpose F' of $F \in BL(X, Y)$. Show that ||F'|| = ||F||
- 2. State Riesz representation theorem for C([a, b])
- 3. What is meant by moment sequences? Give an example.
- 4. True or false: If X is a normed space, then every bounded sequence in X' has a weak* convergent subsequence. Give reason to your answer.
- 5. Explain uniform convexity of a normed space. Is a strictly convex normed space always uniformly convex? Justify your answer.
- 6. Let X be a normed space and A: X → X. Let k ∈ K and Y be a proper closed subspace of X such that (A kI)(X) ⊂ Y. Then show that there is some x in X such that ||x|| = 1 and ||A(x) A(y)|| ≥ |k|/2, ∀y ∈ Y
- 7. If X is a normed space and $A \in CL(X)$, then show that every eigen space of A corresponding to a nonzero eigen value of A is finite dimensional.
- 8. Describe dual X' of a normed space X and its norm.
- 9. Does weak convergence in a Hilbert space always imply convergence. Justify your answer.
- 10. Briefly explain the existence of adjoint of a bounded linear operator on a Hilbert space H.
- 11. Let *H* be a Hilbert space and $A \in BL(H)$. Prove that $||A^2|| = ||A||^2$, if *A* is normal.
- 12. Define numerical range of $A \in BL(H)$. Check whether it is a bounded set or not.
- 13. State finite dimensional spectral theorem for normal/ self-adjoint operators.
- 14. Define a Hilbert-Schmidt operator. Show that A^* is Hilbert-Schmidt operator if $A \in BL(H)$ is a Hilbert-Schmidt operator.

(14 x 1 = 14 Weightage)

PART B

Answer any *seven* questions. Each question carries 2 weightage.

15. Let X be a normed space. Show that if X' is separable, then so is X.

16. Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. For a fixed $y \in L^q$, define $f_y: L^p \to K$ by

18P402

 $f_y(x) = \int_a^b xy \, dm, \ x \in L^p$. Show that the map $F: L^q \to (L^p)'$ defined by $F(y) = f_y, \ y \in L^q$, is a linear isometry from L^q to $(L^p)'$

- 17. If X is a separable normed space, then prove that every bounded sequence in X' has a weak* convergent subsequence.
- 18. Show that every closed subspace of a reflexive normed space is reflexive.
- 19. X is a normed space and $A \in CL(X)$. Prove that every nonzero spectral value of A is its eigen value.
- 20. Show that dim $Z(A' kI) = \dim Z(A kI) < \infty$, for $0 \neq k \in K$, if X is a normed space and $A \in CL(X)$.
- 21. Let *H* be a Hilbert space, *G* be a subspace of *H* and *g* be a continuous linear functional on *G*. Prove that there is a unique continuous linear functional *f* on *H* such that f_{|G} = g and ||f|| = ||g||.
- 22. Show that R(A) = H if and only if A^* is bounded below, where H is a Hilbert space and $A \in BL(H)$.
- 23. If *H* is a Hilbert space and $A \in BL(H)$ is self-adjoint, then show that

$$||A|| = \sup\{|\langle A(x), x \rangle| : x \in H, ||x|| \le 1\}$$

24. If *H* is a Hilbert space and $A \in BL(H)$, then prove that $\sigma_e(A) \subset \sigma_a(A)$ and $\sigma(A) = \sigma_a(A) \cup \{k : \bar{k} \in \sigma_e(A^*)\}.$

(7 x 2 = 14 Weightage)

PART C

Answer any two questions. Each question carries 4 weightage.

- 25. Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Show that the dual of K^n with the norm $|| ||_p$ is linearly isometric to K^n with the norm $|| ||_q$.
- 26. State and prove Riesz representation theorem.
- 27. Let $A \in BL(H)$ and $\omega(A)$ be the numerical range of A. Show that
 - (a) $k \in \omega(A)$ if and only if $\overline{k} \in \omega(A^*)$
 - (b) $\sigma_e(A) \subset \omega(A)$ and $\sigma(A)$ is contained in the closure of $\omega(A)$.
- 28. Let A be a nonzero compact self-adjoint operator on a Hilbert space H over K. Show that there exist a finite or infinite sequence (s_n) of nonzero real numbers with $|s_1| \ge |s_2| \ge \cdots$ and an orthonormal set $\{u_1, u_2, ...\}$ in H such that $A(x) = \sum_n s_n \langle x, u_n \rangle u_n, x \in H$. Also prove that if the set $\{u_1, u_2, ...\}$ is infinite, then $s_n \to 0$ as $n \to \infty$.

 $(2 \times 4 = 8 \text{ Weightage})$