\qquad

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020

(CUCSS-PG)
Mathematics

CC17P MT4 E10 / CC18P MT4 E10 - ADVANCED OPERATIONS RESEARCH

(2017 Admission onwards)
Time: Three Hours
Maximum: 36 weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. What do you mean by separable programming?
2. State the Kuhn-Tucker theorem.
3. Solve graphically:

Minimize $f=\left(x_{1}-2\right)^{2}+x_{2}{ }^{2}$
subject to $x_{1}{ }^{2}+x_{2}-1 \leq 0$,

$$
x_{1} \geq 0, x_{2} \geq 0 .
$$

4. Write the general form of a Quadratic programming problem.
5. Explain the term posynomial with a suitable example.
6. Convert the following problem into the form of a geometric programming problem: Find the dimensions of a rectangle of maximum area inscribed in a circle of radius r.
7. Write the standard form of a geometric programming problem.
8. Explain the primal-dual concept in geometric programming.
9. What is serial multistage model in dynamic programming?
10. Define the term forward recursion used in dynamic programming.
11. State Bellman's principle of optimality.
12. Explain the constraint with negative terms in geometric programming problem.
13. Define the term decision variables and state variables in a dynamic programming problem.
14. Define decomposability in an optimization problem.
($14 \times 1=14$ Weightage)

PART B

Answer any seven questions. Each question carries 2 weightage.
15. Describe how a non linear function can be approximated in a domain by a piecewise linear function.
16. Write the orthogonality conditions in a general geometric programming problem.
17. Discuss how the geometric programming problem can be generalized through Kuhn Tucker Theory.
18. If X_{0} is a solution of the convex programming problem, Minimize $f(X), X \in E_{n}$ subject to $g_{i}(X) \leq 0, i=1,2, \ldots, m, X \geq 0$ and if the set of points X such that $G(X)<0$ is non empty, then prove that there exists a vector $Y_{0} \geq 0$ in E_{m} such that $f(X)+Y_{0}^{\prime} G(X) \geq f\left(X_{0}\right)$.
19. Minimize $f(X)=\left(x_{1}+1\right)^{2}+\left(x_{2}-2\right)^{2}$

$$
\begin{aligned}
\text { subject to } x_{1}-2 & \leq 0, \\
x_{2}-1 & \leq 0, \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

20. Explain the terms weight functions and normalized weight functions in geometric programming problems.
21. Discuss the computational economy in dynamic programming.
22. Determine $\max \left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)$ subject to $u_{1} u_{2} u_{3} \leq 6$ where u_{1}, u_{2}, u_{3} are positive integers.
23. Describe a method in dynamic programming to solve the problem:

Minimize $\sum_{j=1}^{n} f_{j}\left(u_{j}\right)$

$$
\begin{aligned}
& \text { subject to } \sum_{j=1}^{n} a_{j} u_{j} \geq b \\
& \qquad u_{j}, a_{j} \geq 0, j=1,2, \ldots . n, b>0 .
\end{aligned}
$$

24. What are the essential features of dynamic programming problem?
($7 \times 2=14$ Weightage)

PART C

Answer any two questions. Each question carries 4 weightage.
25. Solve by the method of quadratic programming:

Minimize $-6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}$ subject to $x_{1}+x_{2} \leq 2, x_{1}, x_{2} \geq 0$.
26. Solve the geometric programming problem:

Minimize $f(X)=\frac{c_{1}}{x_{1} x_{2} x_{3}}+c_{2} x_{2} x_{3}$ subject to $g_{1}(X)=c_{3} x_{1} x_{3}+c_{4} x_{1} x_{2}=1$ and $c_{i}>0, x_{j}>0, i=1,2,3,4, j=1,2,3$.
27. Maximize $\sum_{n=1}^{4}\left(4 u_{n}-n u_{n}^{2}\right)$ subject to $\sum_{n=1}^{4} u_{n}=10, u_{n} \geq 0$.
28. Prove that in a serial two stage minimization or maximization problem if (i) the objective function \emptyset_{2} is a separable function of stage returns $f_{1}\left(X_{1}, U_{1}\right)$ and $f_{2}\left(X_{2}, U_{2}\right)$, and (ii) \emptyset_{2} is a monotonic non decreasing function of f_{1} for every feasible value of f_{2}, then the problem is decomposable.
($2 \times 4=8$ Weightage)

