Name...
Reg. No...

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020

(Regular/Supplementary/Improvement)
(CUCSS - PG)
(Mathematics)

CC17P MT4 E14 / CC18P MT4 E14 - DIFFERENTIAL GEOMETRY

(2017 Admissions onwards)

Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage

1. Sketch the level set at $c=0,1$ and -1 for the function $f\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}-x_{2}{ }^{2}$.
2. Sketch the vector field $\mathbb{X}(p)=(p, X(p))$, on \mathbb{R}^{2} where $X(p)=\left(x_{2}, x_{1}\right)$.
3. Let $f: U \rightarrow \mathbb{R}$ be a smooth function and let $\alpha: I \rightarrow U$ be an integral curve of ∇f. Show that $\left(\frac{d}{d t}\right)(f \circ \alpha)(t)=\|\nabla f(\alpha(t))\|^{2}$ for all $t \in I$.
4. Let $f: U \rightarrow \mathbb{R}$ be a smooth function on U, wher U is open in \mathbb{R}^{n}. Then show that the graph of f is an n-surface, where $\operatorname{graph}(f)=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{n+1}=f\left(x_{1}, \ldots, x_{n+1}\right)\right\}$.
5. What do you mean by an oriented n-surface S in \mathbb{R}^{n+1}.
6. Show that for an n-plane, the spherical image is a single point.
7. Show that if $\alpha: I \rightarrow \mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.
8. Prove that covariant derivative $\mathbb{X}^{\prime}(t)$ of a smooth vector filed \mathbb{X} is independent of the orientation.
9. Show that $\nabla_{\mathrm{v}}(\mathbb{X} \cdot \mathbb{Y})=\left(\nabla_{\mathrm{v}} \mathbb{X}\right) \cdot \mathbb{Y}+\mathbb{X} \cdot\left(\nabla_{\mathrm{v}} \mathbb{Y}\right)$
10. Define curvature of a plane curve C at a point p.
11. Define the length of a parametrized curve $\alpha: I \rightarrow \mathbb{R}^{n+1}$. Prove that if α is of unit speed, then $l(\alpha)=l(I)$
12. Find the length of the parameterized curve $\alpha: I \rightarrow \mathbb{R}^{4}$ where

$$
\alpha(t)=(\cos t, \sin t, \cos t, \sin t), \mathrm{I}=[0,2 \pi]
$$

13. Describe the normal curvature of an n -surface S in \mathbb{R}^{n+1} at a point $p \in S$.
14. Define a parametrized $n-$ surface.
($14 \times 1=14$ Weightage $)$

Answer any seven questions. Each question carries 2 weightage.

15. Define level set and graph of a function $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n+1}$. Show that the graph of any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is a level set for some function $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$.
16. Find the integral curve through $p=(1,1)$ of the vector field $\mathbb{X}(p)=(p, X(p))$, where $X\left(x_{1}, x_{2}\right)=\left(-2 x_{2}, \frac{1}{2} x_{1}\right)$.
17. What do you mean by a vector at a point p tangent to a level set. Show that the gradient of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$.
18. Let S be an n-surface in $\mathbb{R}^{n+1}, S=f^{-1}(c)$, where $f: U \rightarrow R$ is such that $\nabla f(q) \neq 0$ for all $q \in S$. Suppose $g: U \rightarrow R$ is a smooth function and $p \in S$ is an extreme point of g on S. Prove that there exists a real number λ such that $\nabla g(p)=\lambda \nabla f(p)$.
19. Let $S \subset \mathbb{R}^{n+1}$ be a connected n - surface in \mathbb{R}^{n+1}, then show that there exists on S exactly two smooth unit normal vector fields \mathbb{N}_{1} and \mathbb{N}_{2}, and $\mathbb{N}_{2}(p)=-\mathbb{N}_{1}(p)$, for all $p \in S$.
20. Determine all the geodesics in S^{2}.
21. Compute ∇_{v} f where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}-x_{2}{ }^{2}, v=(1,1, \cos \theta, \sin \theta)$.
22. Prove that the 1 -form η on $\mathbb{R}^{2}-\{0\}$ defined by $\eta=-\frac{x_{2}}{x_{1}^{2}+x_{2}^{2}} d x_{1}+\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}} d x_{2}$ is not exact.
23. Let C be a connected oriented plane curve and let $\beta: I \rightarrow C$ be a unit speed global parameterization of C. Then show that β is either one to one or periodic. Show further that β is periodic if and only if C is compact.
24. Find the Gaussian curvature $K: S \rightarrow \mathbb{R}$, where S is the cone $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=0, x_{3}>0$.

$$
(7 \times 2=14 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 4 weightage.
25. Show that the Gauss map maps a compact connected n-surface S in \mathbb{R}^{n+1} on to the unit sphere S^{n}.
26. (a) Let S be an n - surface in $\mathbb{R}^{n+1} \alpha: I \rightarrow S$ be a parameterized curve in $\mathrm{S}, t_{0} \in I$ and $\boldsymbol{v} \in S_{\alpha\left(t_{0}\right)}$. Then prove that there exists a unique vector field V , tangent to S along α, which is parallel and has $\mathrm{V}\left(t_{0}\right)=v$.
(b) Let S be the unit n-sphere $\sum_{i=1}^{n+1} x_{i}^{2}=1$ oriented by outward unit normal vector field. Prove that the Weingarten map of S is multiplication by -1 .
27. (a) Let $C=f^{-1}\left(r^{2}\right)$, where $f\left(x_{1}, x_{2}\right)=\left(x_{1}-a\right)^{2}+\left(x_{2}-b\right)^{2}$, oriented by the outward normal $\frac{\nabla f}{\|\nabla f\|}$ Let $p=(a+r, b) \in C$. Find the local parameterization of C at p. Also compute the curvature of C at p.
(b) Let C be a plane curve oriented by the unit normal vector field \mathbb{N}. Let $\alpha: I \rightarrow C$ be a unit speed local parameterization of C. For $t \in I, \mathbb{T}(t)=\alpha \dot{(} t)$, show that $\dot{\mathbb{T}}=(\kappa \circ \alpha)(\mathbb{N} \circ \alpha)$ and $(\mathbb{N} \circ \alpha)=-(\kappa \circ \alpha) \mathbb{T}$
28. (a) Describe a parametrized torus in \mathbb{R}^{4}.
(b) Show for a parameterized n-surface $\varphi: U \rightarrow \mathbb{R}^{n+1}$ in \mathbb{R}^{n+1} and for $p \in U$, there exists an open set $U_{1} \subset U$ about p such that $\varphi\left(U_{1}\right)$ is an n-surface in \mathbb{R}^{n+1}.
($2 \times 4=8$ Weightage)

