18P404

(Pages: 3)

(Regular/Supplementary/Improvement) (CUCSS - PG) (Mathematics)

Time: Three Hours

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Sketch the level set at c = 0, 1 and -1 for the function $f(x_1, x_2) = x_1^2 x_2^2$.
- 2. Sketch the vector field $\mathbb{X}(p) = (p, X(p))$, on \mathbb{R}^2 where $X(p) = (x_2, x_1)$.
- 3. Let $f: U \to \mathbb{R}$ be a smooth function and let $\alpha: I \to U$ be an integral curve of ∇f . Show that (d)

$$\left(\frac{a}{dt}\right)(f \circ \alpha)(t) = \|\nabla f(\alpha(t))\|^2 \text{ for all } t \in I$$

- 5. What do you mean by an oriented n-surface S in \mathbb{R}^{n+1} .
- 6. Show that for an n-plane, the spherical image is a single point.
- for all $t \in I$.
- orientation.
- 9. Show that $\nabla_{\mathbf{v}}(\mathbb{X} \cdot \mathbb{Y}) = (\nabla_{\mathbf{v}} \mathbb{X}) \cdot \mathbb{Y} + \mathbb{X} \cdot (\nabla_{\mathbf{v}} \mathbb{Y}).$
- 10. Define curvature of a plane curve *C* at a point *p*.
- then $l(\alpha) = l(I)$.
- 12. Find the length of the parameterized curve $\alpha: I \to \mathbb{R}^4$ where $\alpha(t) = (\cos t, \sin t, \cos t, \sin t), I = [0, 2\pi].$
- 13. Describe the normal curvature of an n-surface *S* in \mathbb{R}^{n+1} at a point $p \in S$.
- 14. Define a parametrized n –surface.

```
Name.....
                                        Reg. No.....
FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020
CC17P MT4 E14 / CC18P MT4 E14 - DIFFERENTIAL GEOMETRY
```

(2017 Admissions onwards)

```
Maximum: 36 Weightage
```

4. Let $f: U \to \mathbb{R}$ be a smooth function on U, wher U is open in \mathbb{R}^n . Then show that the graph of f is an n-surface, where graph(f) = { $(x_1, ..., x_{n+1}) \in \mathbb{R}^{n+1}$: $x_{n+1} = f(x_1, ..., x_{n+1})$ }.

7. Show that if $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$

8. Prove that covariant derivative X'(t) of a smooth vector filed X is independent of the

11. Define the length of a parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$. Prove that if α is of unit speed,

$$(14 \times 1 = 14 \text{ Weightage})$$

Turn Over

Part B

Answer any *seven* questions. Each question carries 2 weightage.

- 15. Define level set and graph of a function $f: U \to \mathbb{R}, U \subset \mathbb{R}^{n+1}$. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$, is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 16. Find the integral curve through p = (1, 1) of the vector field X(p) = (p, X(p)), where $(1) = (2u^{-1}u)$ VC.

$$X(x_1, x_2) = \left(-2x_2, \frac{1}{2}x_1\right).$$

- 17. What do you mean by a vector at a point p tangent to a level set. Show that the gradient of fat $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$.
- 18. Let S be an n-surface in \mathbb{R}^{n+1} , $S = f^{-1}(c)$, where $f: U \to R$ is such that $\nabla f(q) \neq 0$ for all $q \in S$. Suppose $q: U \to R$ is a smooth function and $p \in S$ is an extreme point of q on S. Prove that there exists a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$.
- 19. Let $S \subset \mathbb{R}^{n+1}$ be a connected n surface in \mathbb{R}^{n+1} , then show that there exists on S exactly two smooth unit normal vector fields \mathbb{N}_1 and \mathbb{N}_2 , and $\mathbb{N}_2(p) = -\mathbb{N}_1(p)$, for all $p \in S$.
- 20. Determine all the geodesics in S^2 .
- 21. Compute $\nabla_v f$ where $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = x_1^2 x_2^2$, $v = (1, 1, \cos \theta, \sin \theta)$.
- 22. Prove that the 1-form η on $\mathbb{R}^2 \{0\}$ defined by $\eta = -\frac{x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$ is not exact.
- 23. Let C be a connected oriented plane curve and let $\beta: I \to C$ be a unit speed global parameterization of C. Then show that β is either one to one or periodic. Show further that β is periodic if and only if C is compact.
- 24. Find the Gaussian curvature $K: S \to \mathbb{R}$, where S is the cone $x_1^2 + x_2^2 x_3^2 = 0$, $x_3 > 0$.

 $(7 \times 2 = 14 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 4 weightage.

- 25. Show that the Gauss map maps a compact connected n-surface S in \mathbb{R}^{n+1} on to the unit sphere S^n .
- 26. (a) Let S be an n surface in $\mathbb{R}^{n+1} \alpha: I \to S$ be a parameterized curve in S, $t_0 \in I$ and $v \in S_{\alpha(t_0)}$. Then prove that there exists a unique vector field V, tangent to S along α , which is parallel and has $V(t_0) = v$.
 - (b) Let *S* be the unit n-sphere $\sum_{i=1}^{n+1} x_i^2 = 1$ oriented by outward unit normal vector field. Prove that the Weingarten map of S is multiplication by -1.

- normal $\frac{\nabla f}{\|\nabla f\|}$ Let $p = (a + r, b) \in C$. Find the local parameterization of C at p. Also
 - compute the curvature of *C* at *p*.
- unit speed local parameterization of C. For $t \in I$, $\mathbb{T}(t) = \alpha(t)$, show that

$$\dot{\mathbb{T}} = (\kappa \circ \alpha)(\mathbb{N} \circ \alpha)$$
 and $(\mathbb{N} \circ \alpha) = -(\kappa \circ \alpha)$

- 28. (a) Describe a parametrized torus in \mathbb{R}^4 .
 - (b) Show for a parameterized *n*-surface $\varphi: U \to \mathbb{R}^{n+1}$ in \mathbb{R}^{n+1} and for $p \in U$, there exists an open set $U_1 \subset U$ about p such that $\varphi(U_1)$ is an n-surface in \mathbb{R}^{n+1} .

18P404

27. (a) Let $C = f^{-1}(r^2)$, where $f(x_1, x_2) = (x_1 - a)^2 + (x_2 - b)^2$, oriented by the outward

(b) Let C be a plane curve oriented by the unit normal vector field N. Let $\alpha: I \to C$ be a $\circ \alpha)\mathbb{T}$

 $(2 \times 4 = 8 \text{ Weightage})$