19U203

(Pag

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, APRIL 2020

CC19U BCA2 C04 : OPERATION RESEARCH

(Mathematics - Complementary Course)

(2019 Admission : Regular)

Time: 2.00 Hrs

(Draw diagram wherever necessary. The students can answer all questions in sections A & B)

A. Short answer questions. Each question carries 2 marks.

- 1. Explain the growing importance of O. R. in decision making
- 2. " Operations research is an aid for the executive in making his decisions based on scientific method analysis" Explain the statement briefly.
- 3. Explain surplus variable with an example.
- 4. Define the basic variables and the basic vector.
- 5. Define a standard primal form and its dual problem for maximization problem.

	D ₁	D ₂	D ₃	D4	Availability
O ₁	12	8	2	10	28
O ₂	16	18	4	14	32
O ₃	8	6	12	4	10
Requirements	12	20	30	8	

- 7. Define a transhipment problem.
- 8. Write the mathematical formulation of a general assignment problem.
- 9. What you mean by successor activity?
- 10. Define float of an activity.

ges: 2)	Name	:
	Reg.No	:

(CBCSS - UG)

Max. Marks: 60

Credit: 3

6. Find an initial basic feasible solution to the following transportation problem using Least-Cost Method.

- 11. What are the limitations of Critical Path Method (CPM)?
- 12. A project schedule has to the following characteristics

Activity	1-2	1-3	2-4	3-4	3-6	4-9	5-6	5-8	6-8	7-9	8-10	9-10
Days	4	1	1	1	6	5	4	8	1	2	5	7

(Ceiling: 20 Marks)

From the above information construct a network diagram.

B. Short essay questions (Paragraph). Each question carries 5 marks.

- 13. Give three applications of OR in the functional areas of management.
- 14. Check degeneracy of the LPP

Maximize z = 2x + ySubject to $4x + 3y \le 12$ $4x + y \le 8$ $4x - y \le 8$ $x,y \geq 0$

15. Find an initial basic feasible solution to the following transportation problem by Vogel's approximation method

	А	В	C	D	Availability
Ι	6	1	9	3	70
II	11	5	2	8	55
III	10	12	4	7	90
Requirement	85	35	50	45	

16. Solve the following assignment problem to find the maximum total expected sale

А	42	35	28	21
В	30	25	20	15
С	30	25	20	15
D	24	$35 \\ 25 \\ 25 \\ 20$	16	12

17. Solve the following travelling salesman problem to minimize the cost per cycle:

			_
From			
	Α	В	
Α	∞	2	
В	6	∞	
С	8	7	
D	12	4	
E	1	3	

18. Give some of the basic terms used in sequencing.

19. Discuss the processing of n jobs through k machines.

C. Essay questions. Answer any one question.

20. Use two phase method to Maximize z = 5x - 4y + 3zSul 2x6x8xx,

21. Solve the following transportation problem to maximize the profit.

	1	2	3	4	Demand
Α	42	27	24	35	200
В	46	37	32	32	60
С	40	40	30	32	140
Supply	80	40	120	60	

То		
С	D	Е
5	7	1
3	8	2
∞	4	7
6	∞	5
2	8	∞

(Ceiling: 30 Marks)

bject to
$$x + y - 6z = 20$$

 $x + 5y + 10z \le 76$
 $x - 3y + 6z \le 50$
 $y, z \ge 0$

 $(1 \times 10 = 10 \text{ Marks})$