(Pages: 2)

Name:
Reg. No

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2020

(CUCBCSS-UG)

(Regular/Supplementary/Improvement)

CC15U MAT6 B09 - REAL ANALYSIS

Mathematics - Core Course

(2015 Admission onwards)

Time: Three Hours

Maximum: 120 Marks

SECTION A

Answer *all* questions. Each question carries 1 mark.

- 1. The cluster point of B = $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ is
- 2. The absolute maximum of *sin x* is
- 3. Give an example to show that a continuous function does not necessarily have an absolute maximum or absolute minimum on the set.
- 4. Give an example of a continuous function which is not uniformly continuous.
- 5. The norm of partition P = (0, 1.5, 2, 3.4, 4) of [0, 4] is....
- 6. Give an upper bound for the error estimate in trapezoidal approximations.
- 7. If $f_n(x) = \log\left(\frac{x}{n}\right)$, show that $\lim_{n \to \infty} (f_n(x)) = 0$.
- 8. Find the radius of convergence of $\sum x^n$

9. Find the uniform norm of the function $f_n(x) = \frac{x}{n}$, where $x \in [0, 1]$

- 10. Give an example of improper integral of the first kind.
- 11. For n > 1, $\Gamma n =$
- 12. The CPV of $\int_{-\infty}^{\infty} x \, dx = \dots$

(12 x 1 = 12 Marks)

SECTION B

Answer any ten questions. Each question carries 4 marks

- 13. Is there a real number that is one less than its fifth power?
- 14. Show that $g(x) = \frac{1}{x}$ is uniformly continuous on A = { $x \in \mathbb{R} : 1 \le x \le 2$ }.
- 15. Show that if f and g are uniformly continuous on a subset A of \mathbb{R} , then f + g is uniformly continuous on A.
- 16. Using Fundamental theorem evaluate $\int_a^b x \, dx$

17. If f and g are in R[a, b] and if $f(x) \le g(x)$ for all $x \in [a, b]$, prove that $\int_a^b f \le \int_a^b g$.

- 18. If $\varphi(x) = x + 1$ for $x \in [0, 1]$ & rational and $\varphi(x) = 0$ for $x \in [0, 1]$ & irrational, prove that $\varphi \notin R[0, 1]$
- 19. If $g \in R[a, b]$ and if f(x) = g(x) except for a finite number of points in [a, b], prove that $f \in R[a, b]$ and $\int_a^b f = \int_a^b g$.
- 20. If $\varphi: [a, b] \to \mathbb{R}$ takes only a finite number of distinct values, is φ a step function?
- 21. Show that $G_n(x) = x^n(1-x)$ for $x \in [0, 1]$ converges uniformly to g(x) = 0.

17U601

- 22. Prove that sequence (f_n) of bounded functions on $A \subseteq \mathbb{R}$ converges uniformly on A to f if and only if $||f_n f||_A \to 0$.
- 23. Show that $\cos x + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \dots$ converges uniformly. Also give the interval of uniform convergence.
- 24. Show that $\beta(m, n) = \beta(n, m)$.
- 25. Investigate the convergence of $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$.
- 26. Evaluate $\int_0^{\frac{\pi}{2}} \sin^7\theta \cos^5\theta d\theta$.

(10 x 4 = 40 Marks)

SECTION C

Answer any six questions. Each question carries 7 marks.

- 27. If $f: I \to \mathbb{R}$ is continuous on I = [a.b], a closed and bounded interval, show that f is bounded on I.
- 28. If $f: A \to \mathbb{R}$ is uniformly continuous on a set A of \mathbb{R} and if (x_n) is a Cauchy sequence in A, show that $(f(x_n))$ is a Cauchy sequence in \mathbb{R} . Using this, show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1).
- 29. Using Taylor's theorem, approximate e^{-x^2} by a polynomial and use it to find an approximate value of $\int_0^1 e^{-x^2} dx$.
- 30. Let g: $[0,3] \rightarrow \mathbb{R}$ be defined by g(x) = 2 for $0 \le x \le 1$ and g(x) = 3 for $1 < x \le 3$. Find $\int_0^3 g$.
- 31. If f and g are continuous on [a, b] and if $\int_a^b f = \int_a^b g$, prove that there exists $c \in [a, b]$ such that f(c) = g(c)
- 32. State and prove Cauchy criterion for the uniform convergence of sequence of functions.
- 33. Show that (f_n) , where $f_n(x) = \frac{n}{x+n}$, $x \ge 0$ is uniformly convergent in the closed bounded interval [0, m], whatever *m* be, but not in the interval $0 \le x < \infty$.
- 34. Show that $\int_{a}^{\infty} \frac{1}{x^{p}} dx$, a > 0 converges if p > 1 and diverges if $p \le 1$.
- 35. Show that if p and q are positive, then $\beta(p+1,q) + \beta(p,q+1) = \beta(p,q)$.

$$(6 \times 7 = 42 \text{ Marks})$$

SECTION D

Answer any *two* questions. Each question carries 13 marks.

- 36. (i) Show that if $f: A \to \mathbb{R}$ is a Lipchitz function, then f is uniformly continuous. (ii) Is the converse true? Justify with a suitable example.
- 37. State and prove Cauchy criterion for integrability. Using this check the integrability of Dirichlet function.
- 38. (i) Prove that $\beta(m, n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$
 - (ii) Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

(2 x 13 = 26 Marks)
