\qquad
\qquad

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2020

(CUCBCSS-UG)
(Regular/Supplementary/Improvement)
CC15U MAT6 B09 - REAL ANALYSIS
Mathematics - Core Course
(2015 Admission onwards)
Time: Three Hours
Maximum: 120 Marks

SECTION A

Answer all questions. Each question carries 1 mark.

1. The cluster point of $B=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ is \qquad
2. The absolute maximum of $\sin x$ is \qquad
3. Give an example to show that a continuous function does not necessarily have an absolute maximum or absolute minimum on the set.
4. Give an example of a continuous function which is not uniformly continuous.
5. The norm of partition $P=(0,1.5,2,3.4,4)$ of $[0,4]$ is \qquad
6. Give an upper bound for the error estimate in trapezoidal approximations.
7. If $f_{n}(x)=\log \left(\frac{x}{n}\right)$, show that $\lim _{n \rightarrow \infty}\left(f_{n}(x)\right)=0$.
8. Find the radius of convergence of $\sum x^{n}$
9. Find the uniform norm of the function $f_{n}(x)=\frac{x}{n}$, where $x \in[0,1]$
10. Give an example of improper integral of the first kind.
11. For $\mathrm{n}>1$, Г $n=$
12. The CPV of $\int_{-\infty}^{\infty} x d x=$
($12 \times 1=12$ Marks)

SECTION B

Answer any ten questions. Each question carries 4 marks
13. Is there a real number that is one less than its fifth power?
14. Show that $g(x)=\frac{1}{x}$ is uniformly continuous on $\mathrm{A}=\{x \in \mathbb{R}: 1 \leq x \leq 2\}$.
15. Show that if f and g are uniformly continuous on a subset A of \mathbb{R}, then $f+g$ is uniformly continuous on A.
16. Using Fundamental theorem evaluate $\int_{a}^{b} x d x$
17. If f and g are in $\mathrm{R}[\mathrm{a}, \mathrm{b}]$ and if $f(x) \leq g(x)$ for all $x \in[a, b]$, prove that $\int_{a}^{b} f \leq \int_{a}^{b} g$.
18. If $\varphi(x)=x+1$ for $x \in[0,1]$ \& rational and $\varphi(x)=0$ for $x \in[0,1]$ \& irrational, prove that $\varphi \notin R[0,1]$
19. If $\mathrm{g} \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$ and if $f(x)=g(x)$ except for a finite number of points in $[a, b]$, prove that $\mathrm{f} \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$ and $\int_{a}^{b} f=\int_{a}^{b} g$.
20. If $\varphi:[a, b] \rightarrow \mathbb{R}$ takes only a finite number of distinct values, is φ a step function?
21. Show that $G_{n}(x)=x^{n}(1-x)$ for $x \in[0,1]$ converges uniformly to $g(x)=0$.
22. Prove that sequence $\left(f_{n}\right)$ of bounded functions on $\mathrm{A} \subseteq \mathbb{R}$ converges uniformly on A to f if and only if $\left\|f_{n}-f\right\|_{A} \rightarrow 0$.
23. Show that $\cos x+\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}+\ldots$ converges uniformly. Also give the interval of uniform convergence.
24. Show that $\beta(m, n)=\beta(n, m)$.
25. Investigate the convergence of $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$.
26. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{7} \theta \cos ^{5} \theta d \theta$.
($10 \times 4=40$ Marks)

SECTION C

Answer any six questions. Each question carries 7 marks.
27. If $f: I \rightarrow \mathbb{R}$ is continuous on $\mathrm{I}=[$ a.b $]$, a closed and bounded interval, show that f is bounded on I.
28. If $f: A \rightarrow \mathbb{R}$ is uniformly continuous on a set A of \mathbb{R} and if $\left(x_{n}\right)$ is a Cauchy sequence in A , show that $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in \mathbb{R}. Using this, show that $f(x)=\frac{1}{x}$ is not uniformly continuous on $(0,1)$.
29. Using Taylor's theorem, approximate $e^{-x^{2}}$ by a polynomial and use it to find an approximate value of $\int_{0}^{1} e^{-x^{2}} d x$.
30. Let $\mathrm{g}:[0,3] \rightarrow \mathbb{R}$ be defined by $g(x)=2$ for $0 \leq x \leq 1$ and $g(x)=3$ for $1<x \leq 3$. Find $\int_{0}^{3} g$.
31. If f and g are continuous on $[\mathrm{a}, \mathrm{b}]$ and if $\int_{a}^{b} f=\int_{a}^{b} g$, prove that there exists $c \in[a, b]$ such that $f(c)=g(c)$
32. State and prove Cauchy criterion for the uniform convergence of sequence of functions.
33. Show that $\left(f_{n}\right)$, where $f_{n}(x)=\frac{n}{x+n}, x \geq 0$ is uniformly convergent in the closed bounded interval $[0, m]$, whatever m be, but not in the interval $0 \leq x<\infty$.
34. Show that $\int_{a}^{\infty} \frac{1}{x^{p}} d x, \mathrm{a}>0$ converges if $\mathrm{p}>1$ and diverges if $\mathrm{p} \leq 1$.
35. Show that if p and q are positive, then $\beta(p+1, q)+\beta(p, q+1)=\beta(p, q)$.
($6 \times 7=42$ Marks)

SECTION D

Answer any two questions. Each question carries 13 marks.
36. (i) Show that if $f: A \rightarrow \mathbb{R}$ is a Lipchitz function, then f is uniformly continuous.
(ii) Is the converse true? Justify with a suitable example.
37. State and prove Cauchy criterion for integrability. Using this check the integrability of Dirichlet function.
38. (i) Prove that $\beta(m, n)=\frac{\Gamma m \Gamma n}{\Gamma(m+n)}$
(ii) Prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

