\qquad
\qquad

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION APRIL 2020

> (CUCBCSS-UG)
(Regular/Supplementary/Improvement)

CC15U MAT6 B12 - NUMBER THEORY AND LINEAR ALGEBRA

Mathematics - Core Course
(2015 Admission onwards)
Time: Three Hours
Maximum: 120 Marks

Part- A (Objective Type)

Answer all questions. Each question carries 1 mark.

1. For any integer a, prove that $a \mid 0$.
2. Define Euclidean numbers.
3. Write a solution of the equation $2 x \equiv 3(\bmod 5)$
4. Translate the decimal number 74 in binary form.
5. Write the remainder when 16 ! is divided by 17
6. Find the highest exponent of 2 that divides 11 !
7. Find the sum of the divisors of 180
8. Write a proper subspace of the space \mathbb{R}^{2}
9. Write the dimension of the space of polynomials of degree ≤ 2 over \mathbb{R}
10. Define the linear transformation between two vector spaces
11. Give a vector space isomorphic to \mathbb{R}^{2}
12. Write a basis of the space of 2×2 matrices over the field \mathbb{R}
($12 \times 1=12$ Marks $)$
Part-B (Short Answer Type)
Answer any ten questions. Each question carries 4 marks.
13. Prove that $5^{2 n}+7$ is divisible by 8 for all $n \geq 1$
14. If $a \mid b c$, with $\operatorname{gcd}(a, b)=1$, then prove that $a \mid c$.
15. Find all prime numbers that divide 50 !

16 . Find the remainder when $712!+1$ is divided by 719 .
17. Find the smallest number with 10 numbers
18. Prove that $\varphi(n)$ is an even integer for $n>2$
19. Prove that $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$, where p is a prime number and $k \geq 1$
20. For any prime $p, \tau(p!)=2 \tau((p-1)!)$
21. Prove that union of two subspaces of a vector space is need not be a subspace.
22. Let V is a vector space over the field F. Prove that $\alpha O=O$, where $\alpha \in F$ and O is the zero vector in V.
23. Is \mathbb{Q} over \mathbb{R} a vector space? Justify your answer.
24. Write $(1,0)$ as a linear combination of $(1,1)$ and $(-1,2)$ in \mathbb{R}^{2}
25. Show that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=\left(x^{2}, y\right)$ is not a linear map.
26. Show that $S=\left\{1, x, x^{2}, x^{3}\right\}$ is a basis of $\mathbb{R}_{3}[x]$.
($\mathbf{1 0} \times 4=40$ Marks $)$

Part-C (Short Essay Type)

Answer any six questions. Each question carries 7 marks.
27. Prove that for given integers a and b, not both of which are zero, there exist integers x and y such that $\operatorname{gcd}(a, b)=a x+b y$.
28. Prove that the greatest common divisor of two positive integers divides their least common multiple.
29. Divide 100 into two summands such that one is divisible by 7 and the other by 11 , using the concept of Diophantine equation.
30. If p_{n} is the $n^{\text {th }}$ prime number, then prove that $p_{n} \geq 2^{2^{n-1}}$
31. Solve the linear congruence $17 x \equiv 9(\bmod 276)$, using Chinese Remainder Theorem.
32. Assume that p and q are distinct odd primes. Then prove that $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$
33. Prove that the set of 2×2 matrices over the real field is a vector space.
34. Let $f: U \rightarrow V$ be a linear map. Prove that if X is a subspace of U, then $f \rightarrow(X)$ is a subspace of V.
35. If V is an n-dimensional vector space over the field F, then prove that V is isomorphic to F^{n}.

$$
(6 \times 7=42 \text { Marks })
$$

Part- D (Essay Type)

Answer any two questions. Each question carries 13 marks.
36. State and prove Euler's Theorem. Deduce Fermat's little theorem.
37. Prove that the linear Diophantine equation $a x+b y=c$ has solution if and only if $d \mid c$, where $d=\operatorname{gcd}(a, b)$. Explain the method to obtain all the solutions of the Diophantine equation.
38. Let $f: \mathbb{R}_{2}[x] \rightarrow \mathbb{R}^{2}$ be a map defined by $f\left(a+b x+c x^{2}\right)=(a-b, b-c)$. Prove that f is a linear map. Find range, null space, rank and nullity of f. Verify the dimension theorem.

$$
(2 \times 13=26 \text { Marks })
$$

