\qquad
\qquad
THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021
(CUCBCSS-UG)
CC15U MAT3 B03/ CC18U MAT3 B03 - CALCULUS AND ANALYTIC GEOMETRY
(Mathematics - Core Course)
(2015 to 2018 Admissions - Supplementary/Improvement)
Time: Three Hours
Maximum: 80 Marks

Part-A

Answer all questions. Each question carries 1 mark.

1. Evaluate $e^{3 \ln 2}$
2. Find $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$
3. The hyperbolic sine of x is defined as \qquad
4. Define monotone sequence.
5. Check the convergence of $\sum_{n=1}^{\infty} n^{2}$
6. State ratio test.
7. The Taylor series expansion of $f(x)$ about a point $x=a$ is \qquad
8. Find a formula for the $n^{\text {th }}$ term of the sequence $1,-1,1,-1, \ldots \ldots \ldots \ldots$
9. Define absolute convergence test.
10. Find the vertices of the ellipse $2 x^{2}+3 y^{2}=6$.
11. Write the parametric equation of the circle $x^{2}+y^{2}=1$.
12. Graph the set of points whose polar coordinates satisfy the condition $0 \leq r \leq 1$.
(12×1 = 12 Marks)

Part B

Answer any nine questions. Each question carries 2 marks.
13. Evaluate $\int_{0}^{\pi / 2} e^{\sin x} \cos x d x$
14. Find $\frac{d y}{d x}$ if $y=x^{x}, x>0$.
15. Evaluate $\min _{x \rightarrow 0} x^{x}$
16. Evaluate $\int_{0}^{\ln 2} 4 e^{x} \sinh x d x$.
17. Evaluate $\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)^{n}$.
18. Test the convergence of $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}$
19. Test the convergence of $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.
20. Use the discriminant to decide whether $x^{2}-3 x y+y^{2}-x=0$ is parabola.
21. Find the equation of the hyperbola with foci $(0, \pm \sqrt{2})$ and asymptotes $y= \pm x$.
22. Replace the cartesian equation $y^{2}=4 x$ by equivalent polar equation.
23. Find the slope of the curve $x=4 \operatorname{sint}$ and $y=2 \cos t$.
24. Polar equation of a conic is $r=\frac{12}{3+3 \sin \theta}$. Identify the conic.

Part C

Answer any six questions. Each question carries 5 marks.
25. Given $\sinh x=-\frac{3}{4}$. Find the other five hyperbolic functions.
26. If x is a real, show that $\cosh ^{-1} x=\log \left(x+\sqrt{x^{2}-1}\right)$
27. Test the convergence of the series $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\frac{7}{4.5 .6}+\cdots$
28. Test the convergence of the series $\frac{x}{1+x}-\frac{x^{2}}{1+x^{2}}+\frac{x^{3}}{1+x^{3}}-\cdots(0<x<1)$
29. By a suitable rotation of the rectangular axes about the origin, remove the $x y$ term in $5 x^{2}-$ $6 x y+5 y^{2}=8$.
30. Find the tangent to the curve $x=4 \sin t$ and $y=2 \cos t$ at $t=\frac{\pi}{4}$. Also find the value of $\frac{d^{2} y}{d x^{2}}$ at this point.
31. Find the area of the surface generated by revolving the curve whose parametrization is $x=$ $t+\sqrt{2}, \quad y=\frac{t^{2}}{2}+\sqrt{2} t, \quad-\sqrt{2} \leq t \leq \sqrt{2}$ about the y-axis
32. Graph the curve $r=1-\cos \theta$.
33. Find the area of the curve $r^{2}=a^{2} \cos 2 \theta$

Part D

Answer any two questions. Each question carries 10 marks.
34. Show that the series $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$ converges to $\tan ^{-1} x$ for all $-1<x<1$.
35. Find the length of the astroid $x=\cos ^{3} t, y=\sin ^{3} t, \quad 0 \leq t \leq 2 \pi$. Also find the centroid of the first quadrant arc of the above astroid.
36. Define eccentricity of a conic section. Clarify the conic section by eccentricity. How are an ellipses shape and eccentricity related?

