\qquad
\qquad

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

 (CUCBCSS-UG)CC15U MAT3 C03 / CC18U MAT3 C03 - MATHEMATICS - III
(Mathematics - Complementary Course)
(2015 to 2018 Admissions - Supplementary/Improvement)
Time: Three Hours
Maximum: 80 Marks

Part-A

Answer all questions. Each question carries 1 mark.

1. Write the general form of Bernoulli's differential equation.
2. What is the order of the differential equation $y^{\prime \prime}+(8 x+3) y^{\prime}-y=0$.
3. Find the solution of the differential equation $y^{\prime}=k y$.
4. Define Singular matrix.
5. The rank of a Zero matrix is \qquad
6. The eigen values of $\left[\begin{array}{ll}7 & 0 \\ 0 & 5\end{array}\right]$ are $\ldots .$. .
7. The work done by a constant force F in making a displacement d is given by \qquad
8. Define Irrotational vector.
9. State Laplace's equation.
10. If $f=x^{2}+y^{2}+z^{2}$, find $\operatorname{grad} f$.
11. Find the velocity of a particle with position vector $r(t)=\operatorname{sint} \boldsymbol{i}+t \boldsymbol{j}+1 \boldsymbol{k}$.
12. What is the volume of the parallelopiped with edge vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$.
($12 \times 1=12$ Marks $)$

Part B

Answer any nine questions. Each question carries 2 marks.
13. Show that $\left(1+4 x y+2 y^{2}\right) d x+\left(1+4 x y+2 x^{2}\right) d y=0$ is exact.
14. Find the integrating factor of $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0$.
15. Solve the initial value problem $y^{\prime}=-\frac{y}{x} ; \quad y(1)=1$.
16. Find the characteristic roots of $\left[\begin{array}{ccc}-3 & 2 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$
17. Show that $x+2 y=3, \quad 2 x+4 y=7$ is consistent.
18. A force $F=1 i+1 j+1 k$ acts through a point $A(-2,3,1)$. Find the moment vector m of F about a point $Q(1,2,3)$.
19. Are the vectors $[1,2,1],[3,2,-7],[5,6,-5]$ linearly independent?
20. Find the unit tangent vector to the curve $x=t, y=t^{2}, z=t^{3}$ at the point $(2,4,8)$.
21. Find the divergence of $\boldsymbol{v}=x y z \boldsymbol{i}+3 x^{2} y \boldsymbol{j}+\left(x z^{2}-y^{2} z\right) \boldsymbol{k}$ at $(1,2,-1)$.
22. Write the parametric representation of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ with center $(0,0,0)$ and radius \boldsymbol{a}.
23. Define Jacobian.
24. State Gauss's Divergence Theorem.

$$
(9 \times 2=18 \text { Marks })
$$

Part C

Answer any six questions. Each question carries 5 marks.
25. Find the orthogonal trajectories of the family of parabolas $y=c x^{2}$.
26. Solve $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$.
27. Reduce the matrix $\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3\end{array}\right]$ to its normal form.
28. If $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$, find A^{2} using Cayley Hamilton theorem.
29. Find the length of the Catenary $r(t)=t i+\cosh t j$ from $t=0$ to $t=1$.
30. Evaluate the integral $I=\int_{C} 3 x^{2} d x+2 y z d y+y^{2} d z$ from $A:(0,1,2)$ to $B:(1,-1,7)$ by showing that F has a potential.
31. The coordinates of a particle at time t are $x=\sin t-t \cos t, y=\cos t+t \sin t, z=$ t^{2}. Find the speed, the normal and tangential components of acceleration.
32. Find the area enclosed by the cardioid $r=a(1-\cos \theta)$.
33. Find the volume of the region between the cylinder $z=y^{2}$ and the $x y$-plane that is bounded by the planes $x=0, x=1, y=-1, y=1$.

$$
(6 \times 5=30 \text { Marks })
$$

Part D

Answer any two questions. Each question carries 10 marks.
34. Solve using Cramer's rule $2 x-y+3 z=9, x+y+z=6, x-y+z=2$.
35. Solve the initial value problem $2 x y \frac{d y}{d x}-y^{2}+x^{2}=0, y(1)=1$.
36. Verify Green's theorem in the plane for $\oint_{C}\left(x y d x+x^{2} d y\right)$, where C is the curve enclosing the region bounded by the parabola $y=x^{2}$ and the line $y=x$.
$(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0}$ Marks $)$

