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FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021 

(CUCBCSS-UG) 

CC15U MAT5 B05/CC18U MAT5 B05 - VECTOR CALCULUS 

(Mathematics – Core Course) 

(2015 to 2018 Admissions - Supplementary/ Improvement) 

Time: Three Hours                Maximum: 120 Marks 

 

SECTION A (Objective type) 

Answer all questions - Each question carries 1 mark. 

1. Graph the level curve 𝑓(𝑥, 𝑦) = 75 of the function 𝑓(𝑥, 𝑦) = 100 − 𝑥2 − 𝑦2. 

2. Evaluate lim
(𝑥,𝑦,𝑧)→(

𝜋

2
,0,2)

𝑧𝑒−2𝑦 cos 2𝑥. 

3. Find 
𝜕𝑓

𝜕𝑥
, if 𝑓(𝑥, 𝑦) = sin(2𝑥 − 3𝑦). 

4. Write 2-dimensional Laplace equation. 

5. Find the linearization of 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 at (1,1). 

6. Evaluate ∫ ∫ (𝑥 + 𝑦)
1

0
𝑑𝑥 𝑑𝑦

1

0
. 

7. Find the limits of the double integral ∬ 𝑓(𝑥, 𝑦) 𝑑𝐴
𝑅

 where 𝑅 is the region bounded by 

the parabolas 𝑦2 = 4𝑥 and 𝑥2 = 4𝑦. 

8. Find the Jacobian in changing a double integral from Cartesian coordinates into polar 

coordinates. 

9. What is the volume of a closed bounded region 𝐷 in space? 

10. Find gradient field of the function 𝑔(𝑥, 𝑦, 𝑧) = 𝑒𝑧 − 𝑥2𝑦3. 

11. Write a potential function for the conservative field 𝑭 = 2𝑥 𝒊 + 2𝑦 𝒋 + 4𝑧 𝒌. 

12. Show that the field 𝑭 = (𝑧 + 𝑦)𝒊 + 𝑧𝒋 + (𝑦 + 𝑥)𝒌 is not conservative. 

(12 × 1 = 12 Marks) 

Part B (Short answer type) 

Answer any ten questions. Each question carries 4 marks. 

13. Find the domain and range of the function 𝑓(𝑥, 𝑦) =
1

√4−𝑥2−𝑦2
. 

14. Show that the function 𝑓(𝑥, 𝑦) =
𝑥

√𝑥2+𝑦2
 have no limit as (𝑥, 𝑦) → (0,0). 

15. Find 
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
 for the function 𝑓(𝑥, 𝑦) = 𝑡𝑎𝑛−1 (

𝑦

𝑥
). 

16. Show that the function 𝑤 = cos(2𝑥 + 2𝑐𝑡) satisfies the wave equation 
𝜕2𝑤

𝜕𝑡2 = 𝑐2 𝜕2𝑤

𝜕𝑥2 . 

(1)                                                          Turn Over 



17. Find the derivative of 𝑓(𝑥, 𝑦) = 2𝑥𝑦 − 3𝑦2 at 𝑃0(5,5) in the direction of the vector 4𝑖 + 3𝑗. 

18. Find an equation for the tangent line to the circle 𝑥2 + 𝑦2 = 4 at the point (0, −2). 

19. Evaluate ∬ 𝑥𝑦 𝑑𝐴
𝑅

,  where 𝑅 is the region 𝑥2 + 𝑦2 ≤ 25, 𝑥 ≥ 0, 𝑦 ≥ 0. 

20. Evaluate ∫ ∫
𝑒−𝑦

𝑦

∞

𝑥
𝑑𝑦 𝑑𝑥

∞

0
.  

21. Find the volume of the region bounded above by the paraboloid 𝑧 = 𝑥2 + 𝑦2 and below by 

the triangle enclosed by the lines 𝑦 = 𝑥, 𝑥 = 0 and 𝑥 + 𝑦 = 2 in the 𝑥𝑦 −plane. 

22. Find the area of the region cut from the first quadrant by the cardioid 𝑟 = 1 + sin 𝜃. 

23. Evaluate ∬ 𝑒𝑥2+𝑦2

𝑅
𝑑𝑥 𝑑𝑦, where 𝑅 is the semi-circular region bounded by the 𝑥-axis and 

the curve 𝑦 = √1 − 𝑥2. 

24. Find the integral of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 − 𝑦 + 𝑧 − 2 over line segment from (0, 1, 1) to (1, 0, 1). 

25. Find �̅�, the 𝑥-coordinate of center of mass, of a wire of density 𝛿(𝑥, 𝑦, 𝑧) = 15√𝑦 + 2 lies 

along the curve 𝑟(𝑡) = (𝑡2 − 1) 𝑗 + 2𝑡 𝑘, −1 ≤ 𝑡 ≤ 1. 

26. A fluids velocity fluids field is 𝑭 = 𝑥 𝑖 + 𝑧 𝑗 + 𝑦 𝑘. Find the flow along the helix 

 𝑟(𝑡) = cos 𝑡 𝑖 + sin 𝑡 𝑗 + 𝑡 𝑘, 0 ≤ 𝑡 ≤
𝜋

2
.                       

(10 × 4 = 40 Marks) 

Part C (Short essay type) 

Answer any six questions. Each question carries 7 marks. 

27. Show that the function 𝑓(𝑥, 𝑦) = {

2𝑥𝑦

𝑥2+𝑦2 ,                         (𝑥, 𝑦) ≠ (0,0)

0,                                 (𝑥, 𝑦) = (0,0)
         is continuous 

everywhere except at the origin. 

28. Find all second order partial derivatives of the function 𝑓(𝑥, 𝑦) = 𝑥𝑦2 + sin(𝑥𝑦) − 100. 

29. Find the linearization of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 2𝑦𝑧 − 3𝑥𝑧 at the point (1, 1, 0). Also find an upper 

bound for the magnitude of the error in this approximation over the region |𝑥 − 1| ≤ 0.01, 

|𝑦 − 1| ≤ 0.01, |𝑧| ≤ 0.01. 

30. Find the absolute maximum and minimum values of 𝑓(𝑥, 𝑦) = 2𝑥2 − 4𝑥 + 𝑦2 − 4𝑦 + 1 on 

the closed triangular plate in the first quadrant bounded by the lines 𝑥 = 0, 𝑦 = 2, 𝑦 = 2𝑥. 

31. Find the points on the sphere 𝑥2 + 𝑦2 + 𝑧2 = 1 farthest from the point (2, 1, 2). 

32. Using the transformations  𝑢 = 𝑥 − 𝑦 and 𝑣 = 2𝑥 + 𝑦, 

evaluate ∬ (2𝑥2 − 𝑥𝑦 − 𝑦2)𝑑𝐴
𝑅

, for the region 𝑅 in the first quadrant bounded by the lines 

𝑦 = −2𝑥 + 4, 𝑦 = −2𝑥 + 7, 𝑦 = 𝑥 − 2 and 𝑦 = 𝑥 + 1. 

(2) 
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33. Find the volume of the tetrahedron with vertices (0, 0, 0), (1, 1, 0), (0, 1, 0) and (0, 1, 1). 

34. Find volume of the “ice cream cone” 𝐷 cut from the solid sphere 𝜌 ≤ 1 by the cone 𝜙 =
𝜋

3
. 

35. Using Green’s theorem calculate the area enclosed by the circle  

𝒓(𝑡) = a cos 𝑡  𝑖 + 𝑎 sin 𝑡 𝑗, 0 ≤ 𝑡 ≤ 2𝜋.      

(𝟔 × 𝟕 = 𝟒𝟐 𝐌𝐚𝐫𝐤𝐬) 

Part D (Essay type) 

Answer any two questions. Each question carries 13 marks. 

36. Find the derivative of  𝑓(𝑥, 𝑦, 𝑧) = ln(𝑥2 + 𝑦2 − 1) + 𝑦 + 6𝑧 at the point 𝑃0(1, 1, 0) in 

the direction of the vector 𝑖 − 3𝑗 + 4�⃗⃗�. In what directions does the function change most 

rapidly at the given point 𝑃0 and what are the rates of change in these directions. 

37. (𝑎) If sin 𝑧 =
𝑥+𝑦

√𝑥+√𝑦
, prove that 𝑥

𝜕𝑧

𝜕𝑥
+ 𝑦

𝜕𝑧

𝜕𝑦
=

1

2
tan 𝑧. 

(𝑏) Give a reasonable square centered at (1,1) over which the value of 𝑓(𝑥, 𝑦) = 𝑥3𝑦4 will 

       not vary by more than ±0.1 

38. Verify both forms of Green’s theorem for the field 𝐹 = −𝑥2𝑦 𝑖 + 𝑥𝑦2 𝑗 and the region 𝑅 

bounded by the circle 𝒓(𝑡) = cos 𝑡  𝑖 + sin 𝑡 𝑗, 0 ≤ 𝑡 ≤ 2𝜋. 

(𝟐 × 𝟏𝟑 = 𝟐𝟔 𝐌𝐚𝐫𝐤𝐬) 
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