(Pages: 2)

Name: Reg. No:

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CUCBCSS-UG)

CC15U MAT5 B06/CC18U MAT5 B06 - ABSTRACT ALGEBRA

(Mathematics – Core Course)

(2015 to 2018 Admissions - Supplementary/Improvement)

Time : 3 Hours

Maximum: 120 Marks

PART - A (Objective type)

Answer *all* questions. Each question carries 1 mark.

- 1. State true /false: If G is a group of order 19 then G is cyclic.
- 2. The Klein 4-group has how many proper non trivial subgroups?
- 3. Write the number of cosets of $6\mathbb{Z}$ in \mathbb{Z} .
- 4. Determine whether the function $f(x) = x^2$ is a permutation of \mathbb{R} .
- 5. Write the cycle (1, 3, 5, 6, 2) in S_6 as a product of transpositions.
- 6. The kernel of the natural map (canonical map) $\gamma : \mathbb{Z} \to \mathbb{Z}_n$ is
- 7. How many unit elements are there in the ring \mathbb{Z} .
- 8. Give an example of an integral domain which is not a field.
- 9. The characteristic of the ring \mathbb{R} is
- 10. Give an example of a ring with unit element.
- 11. A non-commutative division ring is called
- 12. The number of divisors of zero in \mathbb{Z}_6 .

$(12 \times 1 = 12 \text{ Marks})$

PART-B (Short Answer Type)

Answer any *ten* questions. Each question carries 4 marks.

- 13. Let G be a group. If the inverse of a is a^{-1} , then show that inverse of a^{-1} is a.
- 14. Prove that every cyclic group is abelian.
- 15. If a and b are any two elements of a group $\langle G, * \rangle$, then the linear equations x * a = b have unique solution x in G.
- 16. Find all generators of \mathbb{Z}_{14} .
- 17. Find the orbits of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix}$.
- 18. Exhibit the left and right coset of the subgroup $6\mathbb{Z}$ of \mathbb{Z} .
- 19. A homomorphism ϕ of a group G is a one-to-one function iff kernel of ϕ is $\{e\}$.
- 20. Show that the binary structures $\langle \mathbb{Q}, + \rangle$ and $\langle \mathbb{Z}, + \rangle$ under usual addition are not isomorphic.

- 21. Describe the Klein-4 group V.
- 22. Find the index of $\langle 4 \rangle$ in \mathbb{Z}_{24} .
- 23. Prove that every group of prime order is cyclic.
- 24. If $\phi: G \to G'$ is a homomorphism then prove that $\phi(e) = e'$ and $\phi(a^{-1}) = \phi(a)^{-1}$.
- 25. Let $\phi: G \to G'$ be a homomorphism of a group G onto a group G'. If G is abelian, then prove that G' is also abelian.
- 26. Let $\langle R, +, \cdot \rangle$ be a ring with additive identity 0. Then for any $a, b, c \in R$ prove that
 - (a) $0 \cdot a = a \cdot 0 = 0$
 - (b) $a \cdot (-b) = (-a) \cdot b = -(ab).$

$(10 \times 4 = 40 \text{ Marks})$

PART- C (Short Essay Type) Answer any *six* questions. Each question carries 7 marks.

- 27. Show that the set \mathbb{Q}^+ of all positive rational numbers forms an abelian group under the operation defined by $a * b = \frac{ab}{2}$
- 28. Let $\phi: G \to G'$ be a group homomorphism of a group G on to G'. If G is abelian then G' is abelian.
- 29. Show that the subgroup of a cyclic group is cyclic.
- 30. Show that cancellation law hold in a ring R iff R has no divisors 0.
- 31. Define S_n and show that S_3 is group.
- 32. Find all subgroups of \mathbb{Z}_{10} and draw its lattice diagram.
- 33. If H and K are two subgroups of G, prove that $H \cap K$ is a subgroup of G.
- 34. Find $\sigma^{-1}\tau\sigma$ and σ^{100} for the following permutations σ and τ in S_6 . $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$
- 35. Show that cancellation law hold in a ring R if and only if R no zero divisors.

 $(6 \times 7 = 42 \text{ Marks})$

PART - D (Essay Type)

Answer any two questions. Each question carries 13 marks.

- 36. (a) If G is a group, then prove that $(a * b)^{-1} = b^{-1} * a^{-1}$. for all $a, b \in G$.
 - (b) State and prove Lagrange's theorem.
- 37. State and Prove Cayley's theorem.
- 38. (a) Prove that every field is an intergral domain.
 - (b) Show that every finite integral domain is a field.

 $(2 \times 13 = 26 \text{ Marks})$
