\qquad
\qquad

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021 (CUCBCSS- UG)
 CC15U MAT5 B06/CC18U MAT5 B06 - ABSTRACT ALGEBRA
 (Mathematics - Core Course)
 (2015 to 2018 Admissions - Supplementary/Improvement)

Time: 3 Hours
Maximum: 120 Marks

PART - A (Objective type)
 Answer all questions. Each question carries 1 mark.

1. State true /false: If G is a group of order 19 then G is cyclic.
2. The Klein 4 -group has how many proper non trivial subgroups?
3. Write the number of cosets of $6 \mathbb{Z}$ in \mathbb{Z}.
4. Determine whether the function $f(x)=x^{2}$ is a permutation of \mathbb{R}.
5. Write the cycle $(1,3,5,6,2)$ in S_{6} as a product of transpositions.
6. The kernel of the natural map (canonical map) $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is \qquad
7. How many unit elements are there in the ring \mathbb{Z}.
8. Give an example of an integral domain which is not a field.
9. The characteristic of the ring \mathbb{R} is \qquad
10. Give an example of a ring with unit element.
11. A non-commutative division ring is called
12. The number of divisors of zero in \mathbb{Z}_{6}.
($12 \times 1=12$ Marks $)$
PART- B (Short Answer Type)
Answer any ten questions. Each question carries 4 marks.
13. Let G be a group. If the inverse of a is a^{-1}, then show that inverse of a^{-1} is a.
14. Prove that every cyclic group is abelian.
15. If a and b are any two elements of a group $\langle G, *\rangle$, then the linear equations $x * a=b$ have unique solution x in G.
16. Find all generators of \mathbb{Z}_{14}.
17. Find the orbits of the permutation $\sigma=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2\end{array}\right)$.
18. Exhibit the left and right coset of the subgroup $6 \mathbb{Z}$ of \mathbb{Z}.
19. A homomorphism ϕ of a group G is a one-to-one function iff kernel of ϕ is $\{e\}$.
20. Show that the binary structures $\langle\mathbb{Q},+\rangle$ and $\langle\mathbb{Z},+\rangle$ under usual addition are not isomorphic.
21. Describe the Klein-4 group V.
22. Find the index of $\langle 4\rangle$ in \mathbb{Z}_{24}.
23. Prove that every group of prime order is cyclic.
24. If $\phi: G \rightarrow G^{\prime}$ is a homomorphism then prove that $\phi(e)=e^{\prime}$ and $\phi\left(a^{-1}\right)=\phi(a)^{-1}$.
25. Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism of a group G onto a group G^{\prime}. If G is abelian, then prove that G^{\prime} is also abelian.
26. Let $\langle R,+, \cdot\rangle$ be a ring with additive identity 0 . Then for any $a, b, c \in R$ prove that
(a) $0 \cdot a=a \cdot 0=0$
(b) $a \cdot(-b)=(-a) \cdot b=-(a b)$.
(10 $\times 4=40$ Marks $)$
PART- C (Short Essay Type)
Answer any six questions. Each question carries 7 marks.
27. Show that the set \mathbb{Q}^{+}of all positive rational numbers forms an abelian group under the operation defined by $a * b=\frac{a b}{2}$
28. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism of a group G on to G^{\prime}. If G is abelian then G^{\prime} is abelian.
29. Show that the subgroup of a cyclic group is cyclic.
30. Show that cancellation law hold in a ring R iff R has no divisors 0 .
31. Define S_{n} and show that S_{3} is group.
32. Find all subgroups of \mathbb{Z}_{10} and draw its lattice diagram.
33. If H and K are two subgroups of G, prove that $H \cap K$ is a subgroup of G.
34. Find $\sigma^{-1} \tau \sigma$ and σ^{100} for the following permutations σ and τ in S_{6}. $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2\end{array}\right)$ and $\tau=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5\end{array}\right)$
35. Show that cancellation law hold in a ring R if and only if R no zero divisors.

PART - D (Essay Type)

Answer any two questions. Each question carries 13 marks.
36. (a) If G is a group, then prove that $(a * b)^{-1}=b^{-1} * a^{-1}$. for all $a, b \in G$.
(b) State and prove Lagrange's theorem.
37. State and Prove Cayley's theorem.
38. (a) Prove that every field is an intergral domain.
(b) Show that every finite integral domain is a field.

