\qquad
\qquad

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021
 (CUCBCSS-UG)
 CC15U MAT5 B08/CC18U MAT5 B08 - DIFFERENTIAL EQUATIONS

(Mathematics - Core Course)
(2015 to 2018 Admissions - Supplementary/Improvement)
Time: Three Hours
Maximum: 120 Marks

Part A

Answer all questions. Each question carries 1 mark.

1. If $y=e^{r t}$ is a solution of $y^{\prime \prime}+2 y^{\prime}-y=0$. Then find r .
2. State whether the equation $y^{\prime \prime}+y^{2} t=\sin t$ is linear or non-linear. Why?
3. Write down the general form of Bernoulli's equation
4. Give the general solution of $y^{\prime \prime}+b y^{\prime}+c y=0$ whose characteristic equation has a root $\lambda+i \mu$.
5. Solve $y^{\prime \prime}-y=0$
6. Are the functions $\sin x$ and $\cos x$ linearly independent?
7. Write the initial value problem $2 y^{\prime \prime}-5 y^{\prime}+y=0 ; y(3)=6, y^{\prime}(3)=-1$ as a system of first order initial value problems.
8. Show that $x^{(1)}(t)=\left[\begin{array}{c}e^{3 t} \\ 2 e^{3 t}\end{array}\right]$ is a solution of $x^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right] x$
9. $\mathcal{L}\left(e^{-a t} \sin b t\right)=$ \qquad
10. $\mathcal{L}^{-1}\left(\frac{s}{(s-2)^{2}}\right)=$ \qquad
11. Is the function $f(x)=x|x|$ even, odd or neither?
12. What is the heat conduction equation?
($12 \times 1=12$ Marks $)$

Part B

Answer any ten questions. Each question carries 4 marks.
13. Solve the initial value problem $t y^{\prime}+(t+1) y=0, y(\ln 2)=1$.
14. Solve $\frac{d y}{d x}=\frac{a y+b}{c y+d}$, where a, b, c, d are constants.
15. Without solving find an interval in which the differential equation $\left(t^{2}-9\right) y^{\prime}+2 y=$ $\ln (20-4 t) ; y(4)=-3$ has a unique solution.
16. State and prove the principle of superposition.
17. Find the general solution of $y^{\prime \prime}+2 y^{\prime}+1.25 y=0$.
18. Find a particular solution of $y^{\prime \prime}-y--2 y=6 e^{t}$
19. Using method of reduction of order solve the differential equation $t^{2} y^{\prime \prime}-5 t y^{\prime}+9 y=0 ; t>0$ given $y=t^{3}$ is a solution.
20. Find $f * g$ if $f(t)=t$ and $g(t)=e^{t}$
21. Find the inverse Laplace transform of $F(s)=\frac{1}{s^{2}-4 s+5}$
22. Define the Dirac delta function and find its Laplace transform.
23. Let $f(x)=x$ where $0 \leq x \leq 1$. Find the 2-periodic even extension of f.
24. Find the half range sine series of the function $f(x)=x$ for $0 \leq x \leq \pi$
25. Determine whether $\sin 4 x$ is periodic. If so find its fundamental period.
26. Using the method of method of separating variables solve $u_{x}+u_{y}=0$
($10 \times 4=40$ Marks)

Part C

Answer any six questions. Each question carries 7 marks.
27. Find an integrating factor and solve the differential equation

$$
\left(x^{2}-2 x+2 y^{2}\right) d x+2 x y d y=0
$$

28. State and prove Abel's theorem.
29. Show that the initial value problem $y^{\prime}=y^{1 / 3}, y(0)=0$ has more than one solution. Does it contradict the existence and uniqueness theorem?
30. Solve the initial value problem $4 y^{\prime \prime}+12 y^{\prime}+9 y=0, y(0)=0$ and $y(0)=-4$
31. Find the general solution of the differential equation $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=21 x^{-4}$
32. Find $\mathcal{L}^{-1}\left(\frac{s}{(s+1)(s-2)^{3}}\right)$
33. Find the inverse Laplace transform of $\ln \left(\frac{s+a}{s+b}\right)$
34. Find the Fourier series of the function $f(x)=\left\{\begin{array}{lr}\pi+x & -\pi \leq x<0 \\ \pi-x & 0 \leq x<\pi\end{array}\right.$
35. A string is stretched and fastened to two points L apart. Motion is started by displacing the string into the form $u=k\left(L x-x^{2}\right)$ from which it is released at time $t=0$. Find the displacement of any point on the string at a distance of x from one end at time t.
($6 \times 7=42$ Marks $)$

Part D

Answer any two questions. Each question carries 13 marks.
36. Find the general solution of $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin t$
37. Solve the initial value problem $y^{\prime \prime}+y=\sin 2 t, y(0)=2, y^{\prime}(0)=1$ using Laplace transform.
38. Find the Fourier series expansion of the function $f(x)=x^{2},-\pi \leq x \leq \pi$. Also deduce that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots$
($2 \times 13=26$ Marks $)$

