Name: Reg. No:

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021 (CBCSS-UG)

CC19U MTS5 B05 - THEORY OF EQUATIONS AND ABSTRACT ALGEBRA

(Mathematics – Core Course)

(2019 Admission - Regular)

Time: 2 ¹/₂ Hours

Maximum: 80 Marks Credit: 4

Section A

Answer all questions. Each question carries 2 marks.

- 1. What is the quotient obtained when $x^5 3x^2 + 6x 1$ is divided by $x^2 + x + 1$?
- 2. What is the remainder obtained when x^6-x^5+5x+3 is divided by x-3?
- 3. Write the Tylor's Formula for writing an nth degree Polynomial f(x) in powers of (x-c)
- 4. Write a cubic equation with roots 0, 1, 2
- 5. Find the sum and product of roots of $x^3 + 2x^2 + 3x + 2 = 0$.
- 6. Find the multiplicative inverse of 7 in Z_{15}
- 7. Write the addition table of Z_6
- 8. Find the number of generators of Z_{20}
- 9. Define a group. Give an example.
- 10. Check whether the following permutation is even or odd (1,4,6,3)(2,3,5)
- 11. Find the order of the permutation (1,2,5,3)(3,4,5).
- 12. Define Zero divisors in a ring. Which are the zero divisors in Z_6 .

13. In GL₂(R), find the order of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

14. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}$, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 2 & 5 & 3 \end{pmatrix}$, compute $\sigma\tau$.

15. Check whether the relation on R , defined by $a \sim b$ if $a \geq b$ is an equivalence relation

(Ceiling: 25 marks)

Section B

Answer *all* questions. Each question carries 5 marks.

16. Solve $x^4-2x^3+6x^2+22x+13=0$ having the root 2+3i

- 17. Factorize into linear or quadratic factors x^{6} -1.
- 18. Solve $3x^3-16x^2+23x-6=0$, if the product of two roots is 1.
- 19. Find an upper limit of positive roots of $2x^5-7x^4-5x^3+6x^2+3x-10=0$.
- 20. Prove that the set of all even permutations in S_n is a group.
- 21. Draw the subgroup diagram of Z_{18} .

19U501

(Pages: 2)

- 22. Let $S=R-\{-1\}$, define * on S by a*b=a+b+ab. Show that (S,*) is a group.
- 23. Show that the set of all units of Z_n is a group.

(Ceiling: 35 Marks)

Section C

Answer any *two* questions. Each question carries 10 marks.

- 24. Find the Integral roots of $x^{6}+3x^{5}-36x^{4}-45x^{3}+93x^{2}+132x+140=0$.
- 25. Solve the cubic $3x^{3}-6x^{2}-2=0$.
- 26. Show that a sub group of a cyclic group is cyclic.
- 27. Show that set of all permutations on a set A is a group under permutation multiplication.

 $(2 \times 10 = 20 \text{ Marks})$
