(Pages: 2)

Name:	••••
Reg. No:	•••

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021 (CBCSS-UG)

CC19U MTS5 B06 - BASIC ANALYSIS

(Mathematics – Core Course) (2019 Admission - Regular)

Time: 2 ¹/₂ Hours

Maximum: 80 Marks Credit: 4

Section A

Answer *all* questions. Each question carries 2 marks.

- 1. If $A_i = \{i, i+1, i+2, ...\}$ find (i) $\bigcup_{i=1}^n A_i$ and (ii) $\bigcap_{i=1}^n A_i$.
- 2. Show by a suitable example: If x and y are irrational then x + y and xy need not be irrational.
- 3. If $0 \le a < \varepsilon \quad \forall \varepsilon > 0$, prove that a = 0.
- 4. Prove that $\sqrt{2}$ is irrational.
- 5. Show that $\inf \{\frac{1}{n} : n \in \mathbb{N}\} = 0$.
- 6. Prove that there can be only one supremum for a given subset S of \mathbb{R} .
- 7. Let r < 0 be a negative real number. Use the Archimedean property to prove that there is an $n \in N$ such that $r < \frac{-1}{n} < 0$.
- 8. Can we express null set \emptyset as an interval? Justify.
- 9. Show that $\{1, 0, 1, 0, ...\}$ is not convergent.
- 10. Show that a convergent sequence of real numbers is bounded.
- 11. Define modulus of a complex number x + iy. Find |2 + i|.
- 12. Evaluate (1 + 2i)(1 2i).
- 13. Find principal argument of 1 i
- 14. Identify the set of points representing 0 < |z| < 1 in the Complex plane.
- 15. Find f(i) given $f(z) = z^2 (2+i)z$.

(Ceiling: 25 Marks)

Section B

Answer *all* questions. Each question carries 5 marks.

- 16. State and prove Cantor's theorem.
- 17. Prove that contractive sequence converges in **R**.
- 18. State and Prove monotone convergence theorem.
- 19. Prove that sup(a + S) = a + sup S

- 20. Using nested interval property, prove the uncountability of R
- 21. Prove that if $J_n = (0, \frac{1}{n})$ for $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} J_n = \phi$.
- 22. Show that $|z_1 z_2| = |z_1| |z_2|$
- 23. Find $\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^3$

(Ceiling: 35 Marks)

Section C

Answer any two questions. Each question carries 10 marks.

- 24. State and Prove nested intervals theorem.
- 25. State and prove characterization theorem of intervals.
- 26. Prove that there exists $x \in R$ such that $x^2 = 2$.
- 27. Find the image of circular arc defined by |z|=2, $0 \le \arg z \le \frac{\pi}{2}$, under the mapping $w = z^2$.

 $(2 \times 10 = 20 \text{ Marks})$
