\qquad
\qquad

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021 (CBCSS-UG)

 CC19U MTS5 B06-BASIC ANALYSIS

 CC19U MTS5 B06-BASIC ANALYSIS}
(Mathematics - Core Course)
(2019 Admission - Regular)
Time: 2112 Hours
Credit: 4

Section A

Answer all questions. Each question carries 2 marks.

1. If $A_{i}=\{i, i+1, i+2, \ldots\}$ find (i) $\bigcup_{i=1}^{n} A_{i}$ and
(ii) $\cap_{i=1}^{n} A_{i}$.
2. Show by a suitable example: If x and y are irrational then $x+y$ and $x y$ need not be irrational.
3. If $0 \leq a<\varepsilon \forall \varepsilon>0$, prove that $a=0$.
4. Prove that $\sqrt{2}$ is irrational.
5. Show that $\inf \left\{\frac{1}{n}: \mathrm{n} \in \mathbb{N}\right\}=0$.
6. Prove that there can be only one supremum for a given subset S of \mathbb{R}.
7. Let $\mathrm{r}<0$ be a negative real number. Use the Archimedean property to prove that there is an $n \in N$ such that $\mathrm{r}<\frac{-1}{n}<0$.
8. Can we express null set \emptyset as an interval? Justify.
9. Show that $\{1,0,1,0, \ldots\}$ is not convergent.
10. Show that a convergent sequence of real numbers is bounded.
11. Define modulus of a complex number $x+i y$. Find $|2+i|$.
12. Evaluate $(1+2 i)(1-2 i)$.
13. Find principal argument of $1-i$
14. Identify the set of points representing $0<|z|<1$ in the Complex plane.
15. Find $f(i)$ given $f(z)=z^{2}-(2+i) z$.
(Ceiling: $\mathbf{2 5}$ Marks)

Section B

Answer all questions. Each question carries 5 marks.
16. State and prove Cantor's theorem.
17. Prove that contractive sequence converges in \mathbf{R}.
18. State and Prove monotone convergence theorem.
19. Prove that $\sup (a+S)=a+\sup S$
20. Using nested interval property, prove the uncountability of \mathbf{R}
21. Prove that if $J_{n}=\left(0, \frac{1}{n}\right)$ for $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} J_{n}=\phi$.
22. Show that $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
23. Find $\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)^{3}$
(Ceiling: 35 Marks)

Section C

Answer any two questions. Each question carries 10 marks.
24. State and Prove nested intervals theorem.
25. State and prove characterization theorem of intervals.
26. Prove that there exists $x \in R$ such that $x^{2}=2$.
27. Find the image of circular arc defined by $|z|=2,0 \leq \arg z \leq \frac{\pi}{2}$, under the mapping $w=z^{2}$.

