\qquad
\qquad

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021 (CBCSS-UG)

 CC19U MTS5 B09 - INTRODUCTION TO GEOMETRY

 CC19U MTS5 B09 - INTRODUCTION TO GEOMETRY}
(Mathematics - Core Course)
(2019 Admission - Regular)
Time: 2 Hours
Credit: 3

Section A

Answer all questions. Each question carries 2 marks.

1. Find the foci and directrices of the conic $x^{2}-2 y^{2}=1$.
2. Determine the slope of the tangent to the curve in R^{2} with parametric equations $x=a \cos t, y=b \sin t$, where $t \in(-\pi, \pi], t \neq 0, \pi$.
3. Write the equation of a non-degenerate conic in polar co-ordinates.
4. State Reflection property of Ellipse.
5. Illustrate isometry.
6. Determine whether or not the transformation $t(x)=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right) x+\binom{2}{1}$ of R^{2} is a Euclidean transformation.
7. Give an example of an affine transformation that is not a parallel projection.
8. State Conjugate Diameters Theorem.
9. State the Converse to Menelaus' Theorem.
10. Determine whether the Points $[1,2,3],[1,1,-2],[2,1,-9]$ are collinear.
11. Distinguish between Collinearity property and Incidence Property of $\mathbb{R}^{2}{ }^{2}$.
12. Determine the point of intersection of each of the Lines in $\mathbb{R P}^{2}$ with equations $x+6 y-5 z=0$ and $x-2 y+z=0$.
(Ceiling: 20 Marks)

Section B

Answer all questions. Each question carries 5 marks.
13. Determine the equations of the tangent and the normal to the parabola with parametric equations $x=2 t^{2}, y=4 t$ at the point with parameter $t=3$.
14. State and prove Focal distance property of Hyperbola.
15. Prove that Euclidean-congruence is an equivalence relation.
16. Prove that a parallel projection preserves ratios of lengths along a given straight line.
17. Determine the affine transformation which maps the points $(1,-1),(2,-2)$ and $(3,-4)$ to the points $(8,13),(3,4)$ and $(0,-1)$, respectively.
18. Prove that every hyperbola is affine-congruent to the rectangular hyperbola with equation $x y=1$.
19. Determine homogeneous coordinates of the form $[a, b, 1]$ for the Points $[2,-1,4],[4,2,8],[2 \pi,-\pi, 4 \pi],[200,100,400],\left[\frac{-1}{2}, \frac{-1}{4},-1\right],[6,-9,-12]$. Hence decide which homogeneous coordinates represent the same Points.
(Ceiling: 30 Marks)

Section C

Answer any one question. The question carries 10 marks.
20. Prove that the conic E with equation $3 x^{2}-10 x y+3 y^{2}+14 x-2 y+3=0$ is a hyperbola. Determine its center, and its major and minor axes.
21. State and prove Cevas’ Theorem.

