19U5105

(Pages: 3)

FIFTH SEMESTER B.Voc. DEGREE EX

(Regular/Supplementar CC18U GEC5 OT15 - NUMERICAL ANALYS

> (Information Technology (2018 Admission

Time: Three Hours

PART A

Answer all questions. Each question carries 1 mark. 2. Give an example of algebraic equation and transcendental equation

- 1. What are the different types of errors in computation?
- 3. Write Regula Falsi formula
- 4. Using bisection method find first two iterations of $x^3 5x + 1 = 0$
- 5. Define average operator μ
- 6. Give an equation connecting E and Δ
- 7. Write Newton's backward formula
- 8. Define feasible solution to general linear programming problems
- 9. Examine whether $x_1 = 2$, $x_2 = 1$ are basic feasible solution of the equations

 $x_1 + 2x_2 = 4$

 $2x_1 + x_2 = 5$

10. Define Artificial variable

PART B

Answer any *eight* questions. Each question carries 2 marks. 11. Solve the equation using Newton –Raphson method $x^3 - 6x + 4 = 0$

- 12. Explain Round off error and Absolute error
- 13. Prove that $\delta E^{1/2} = \Delta$
- 14. Construct Newton's forward difference table

	Х	0	1	2	3	
	Y	1	2	1	10	
2						

15. Using Trapezoidal Rule evaluate $\int_{1}^{2} x^{2} dx$ considering 4 subintervals

16. Find f (5) using Lagrange's interpolation formula

Х	1	3	4	6
Y	-3	0	30	132

(1)

)	Name:
	Reg. No:
KAMINATION	, NOVEMBER 2021
y/Improvement))
IS AND OPTI	MIZATION TECHNIQUES
- Common Cou	rse)
n onwards)	
	Maximum: 80 Marks

(10 x 1 = 10 Marks)

Turn Over

- 17. Using Euler's method find y(0.2), $\frac{dy}{dx} = \log(x + y)$, y(0) = 1 take h = 0.1
- 18. Compute $f^{I}(2.2)$ from the following table

Х	1.4	1.6	1.8	2	2.2
f(x)	4.0552	4.9530	6.0496	7.3981	9.0250

19. Explain Duality concept in linear programming problems with an example

- 20. What is Transportation Problem?
- 21. Solve the following minimal Assignment problem

		Programmes			
		A B C			
	1	120	100	80	
Programmers	2	80	90	110	
	3	110	140	120	

22. When is Charne's method used to solve linear programming problems?

 $(8 \times 2 = 16 \text{ Marks})$

PART C

Answer any *six* questions. Each question carries 4 marks.

23. Gauss Seidal method solve the equations

4x + 2z = 4

5y + 2z = -3

5x + 4y + 10z = 2

24. Using Sterling's formula find f (25)

Х	20	30	40	50
Y	24	32	35	40

25. Show that $\mu \delta = \frac{\Delta + \nabla}{2}$

- 26. Using Picard's method find y (0.1), $\frac{dy}{dx} = x + x^4 y$, y(0) = 3
- 27. Using Taylor's series, solve $\frac{dy}{dx} = x y^2$, y(0) = 1. Also find y(0.1)
- 28. Compute the first and second derivative of the function tabulated below at x = 1.2

Х	1	1.2	1.4	1.6	1.8	2	2.2
Y	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

29. Explain Dual simplex method

30. State the difference between transportation problem and assignment problem

North West Corner Rule.

		Stores					
		S_1	S_2	S ₃	S_4	Supply	
	А	5	1	3	3	12	
Warehouses	В	3	3	5	4	15	
	С	6	4	4	3	17	
	D	4	1	4	2	11	
	Demand	18	9	16	12		

PART D

32. Using Crout's triangularization method solve the equations

$$x_1 - x_2 + x_3 = 1$$

-3x₁ + 2x₂ -3 x₃ = -6

 $2x_1 - 5x_2 + 4x_3 = 5$

33. Using Newton's divided difference formula find f(x) as a polynomial in x

	Х	-1	0	3	6	7		
	Y	3	-6	39	822	1611		
e Runge-kutta method to find the value of y (0.1) and y (0.2) given that $\frac{dy}{dx} = x+y$,								

34. Use 1 lunge

y (0) = 1 And h = 0.1
35. Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^{2}}$$
 using.
a) Trapezoidal Rule taking h = $\frac{1}{4}$
b) Simpson's ¹/₃ Rule taking h = $\frac{1}{4}$
c) Simpson's ³/₈ Rule taking h = $\frac{1}{4}$

(3)

19U5105

31. Obtain an initial basic feasible solution to the following transportation problem using

 $(6 \times 4 = 24 \text{ Marks})$

Answer any two questions. Each question carries 15 marks.

 $(2 \times 15 = 30 \text{ Marks})$