\qquad

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2021

(CBCSS - UG)

CC20U MTS2 C02 - MATHEMATICS - II

(Mathematics - Complementary Course)
(2020 Admission - Regular)

Time : 2.00 Hours

Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Graph the set of points whose polar coordinates satisfy the condition $0 \leq r \leq 1$.
2. State inverse function test.
3. Replace the Cartesian equation $y^{2}=4 x$ by the equivalent polar equation.
4.

Find ${ }^{\frac{d}{d x}}(x \sinh x-\cosh x)$.
5.

Show that $\left.\frac{d}{d x}\left(\cosh ^{-1} x\right)\right)^{\frac{1}{\sqrt{x^{2}-1}}}$.
6.

Find $\lim _{n \rightarrow \infty} \sin \left(\frac{\pi n}{2 n+1}\right)$.
7.

Sum the series $\sum_{i=0}^{\infty} \frac{1}{5^{i}}$
8.

Test for convergence of the series $\sum_{i=2}^{\infty} \frac{1}{\ln i}$
9. State the alternate series test.
10. Define the terms basis and dimension of a vectorspace.
11. If A is a triangular matrix of order 3 , prove that $\operatorname{det} A$ is the product of its diagonal elements.
12.

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)
Answer all questions. Each question carries 5 marks.
13. Find the area of the surface generated by revolving the curve $y=x^{3}$, about the x -axis for $0 \leq x \leq{ }^{\frac{1}{2}}$.
14.

Evaluate $\int_{0}^{1} \ln x d x$
15.

Evaluate $\int_{\frac{\pi}{z}}^{\frac{\pi}{2}}(x+\sin x) d x$ using Riemann sums and trapezoidal rule with $n=8$. Compare these two approximate values with the actual value.
16.

Let $B=\left\{w_{1}, w_{2}, w_{3}\right\}$ where $w_{1}=\left\langle^{\frac{1}{\sqrt{3}}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle, w_{2}=\left\langle\begin{array}{c}\frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \\ ,\end{array}, w_{3}=\left\langle 0,{ }^{\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}}\right\rangle\right.$. Show that B is an orthonormal basis. Express $u=\langle 3,-2,9\rangle$ in terms of B.
17.

Find the rank of the matrix $\left|\begin{array}{cccc}1 & -2 & 3 & 4 \\ 1 & 4 & 6 & 8 \\ 0 & 1 & 0 & 0 \\ 2 & 5 & 6 & 8\end{array}\right|$
18.

Find the eigen values and the correponding eigen vectors of the matrix $A=\left(\begin{array}{cc}3 & 4 \\ -1 & 7\end{array}\right)$.
19.

Show that the matrix $\left[\begin{array}{cc}1 & -2 \\ 4 & 5\end{array}\right]$ satisfies its own characteristic equation.
(Ceiling: 30 Marks)
Part C (Essay questions)
Answer any one question. Each question carries 10 marks.
20. Solve the linear system using Gaussian elimination or Gauss-Jordan method.

$$
\begin{gathered}
2 x_{1}+6 x_{2}+x_{3}=7 \\
x_{1}+2 x_{2}-x_{3}=-1 \\
5 x_{1}+7 x_{2}-4 x_{3}=9
\end{gathered}
$$

21.

Given $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, find a orthogonal matrix P that diagonalizes A and the diagonal matrix $D=P^{\top} A P$

$$
(1 \times 10=10 \text { Marks })
$$

