18U605

(Pages: 3

SIXTH SEMESTER B.Sc. DEGREE

(CUCBCSS-(Regular/Supplementar CC15U MAT6 E02/ CC18U MAT6 E0

> (Mathematics -(2015 Admission

Time: Three Hours

Section A

Answer *all* questions. Each question carries 1 mark.

- 1. Define slack variable.
- 2. Define convex hull of a set S.
- 3. When does the simplex method indicate that the LPP has unbounded solution?
- 4. What do you mean by an unbalanced assignment problem?
- 5. The original problem is usually called _____ problem.
- 6. Define interior of a set.
- 7. Give mathematical formulation of the assignment problem?
- 8. Let T = (2,3), then closure of *T* is _____
- 9. Define loop in a transportation problem.
- 10. If each $u_i + v_j c_{ij} \le 0$, then the current basic feasible solution is _____
- 11. Convex hull of a line is _____
- 12. Define objective function.

Section B

Answer any *nine* questions. Each question carries 2 marks.

- 13. Write the standard form of a LPP.
- 14. Prove that a hyper plane in \mathbb{R}^n is a convex set.
- 15. Prove that dual of a dual is primal.
- 17. Prove that in \mathbb{R}^2 , the open half plane $\{(x, y): 2x + 5y < 7\}$ is a convex set.
- 18. Define artificial variable
- 19. Explain the method for solving a maximization assignment problem?
- 20. Define generalized transportation problem.

3)	Name:
	Reg. No
EXAMI	NATION, APRIL 2021
-UG)	
y/Improv	vement)
2 - LINI	EAR PROGRAMMING
Elective)
onward	s)
	Maximum: 80 Marks

$(12 \times 1 = 12 \text{ Marks})$

16. Show that the intersection of the members of any family of convex sets is again a convex set.

Turn Over

21. Solve graphically:

Maximize $z = x_1 + x_2$

subject to the constraints: $x_1 + x_2 \le 1$; $-3x_1 + x_2 \ge 3$; $x_1, x_2 \ge 0$.

22. Rewrite in standard form:

Minimize $z = 12x_1 + 5x_2$

subject to the constraints: $6x_1 + 3x_2 \le 15$; $7x_1 + 2x_2 \le 14$; $x_1, x_2 \ge 0$.

23. Find an IBFS:

	Ι	II	III	
O_1	16	19	12	14
O_2	22	13	19	16
O ₃	14	28	8	12
	10	15	17	

24. Define penalty.

 $(9 \times 2 = 18 \text{ Marks})$

Section C Answer any *six* questions. Each question carries 5 marks.

25. Show that $A = \{(1, 0), (0, 1)\}$ and $B = \{(x, y) \in R^2 : y = \sin x\}$ are not convex.

26. Explain Big-M method.

27. Find an optimal assignment to minimize cost:

Ι	II	III	IV	V
9	8	7	6	4
5	7	5	6	8
8	7	6	3	5
8	5	4	9	3
6	7	6	8	5
	9 5 8 8	9 8 5 7 8 7 8 5	9 8 7 5 7 5 8 7 6 8 5 4	9 8 7 6 5 7 5 6 8 7 6 3 8 5 4 9

28. Solve graphically:

Minimize $z = 2x_1 + x_2$

subject to the constraints: $5x_1 + 10x_2 \le 50$; $x_1 + x_2 \ge 1$; $x_2 \le 4$; $x_1, x_2 \ge 0$.

- 29. Explain Linear Programming Problem with a suitable example.
- 30. What is a restrictive assignment problem? How can we tackle it?
- 31. Solve by algebraic method:

Maximize $z = 6x_1 - 2x_2$

subject to the constraints: $2x_1 - x_2 \le 2$; $x_1 \le 4$; $x_1, x_2 \ge 0$.

32. Use two-phase simplex method to Maximize $z = 3x_1 + 2x_2$

subject to the constraints: $2x_1 + x_2 \le 2$; $3x_1 + 4x_2 \ge 12$

 $x_1, x_2 \ge 0.$

33. Find the dual of the LPP:

Maximize $z = x_1 - x_2 + 3x_3 + 2x_4$

subject to the constraints:

 $x_1 + x_2 \ge -1; x_1 - 3x_2 - x_3 \le 7$ x_2, x_3 unrestricted.

Section D

Answer any *two* questions. Each question carries 10 marks.

34. Let $A \leq R^n$ be any set. Show that the convex hull of A, is the set of all finite convex

combination of vectors in A.

35. Solve the Transportation Problem

	D ₁	D2	D3	D ₄	Availability
O1	1	2	1	4	30
O ₂	4	2	5	9	50
O ₃	20	40	30	10	20
Demand	20	40	30	10	100

36. Use simplex method to solve the LPP:

Minimize $Z = x_1 - 3x_2 + 2x_3$

subject to the constraints:

 $3x_1 - x_2 + 2x_3 \le 7; -2x_1 + 4x_2 \le 12; -4x_1 + 3x_2 + 8x_3 \le 10$ $x_1, x_2, x_3 \ge 0$.

18U605

$$x_1 + x_3 - 3x_4 = -2; x_1, x_4 \ge 0$$

 $(6 \times 5 = 30 \text{ Marks})$

 $(2 \times 10 = 20 \text{ Marks})$