Name :
Reg. No:
\qquad
\qquad

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2021
(CUCBCSS-UG)
(Regular/Supplementary/Improvement)

CC15U MAT6 B10/ CC18U MAT6 B10 - COMPLEX ANALYSIS

(Mathematics - Core Course)
(2015 Admission onwards)

Maximum : 120 marks

Section A

Answer all questions. Each question carries 1 mark.

1. Compute $f^{\prime}(z)$ where $f(z)=\exp \left(1-i-4 i z^{2}\right)^{3}$.
2. Find P.V. of $(-i)^{i}$.
3. Obtain the real and imaginary parts of $\sin z$.
4. Show that any two antiderivatives of a complex function differ by a constant.
5. Obtain the value of $\int_{|z|=1} \exp \left(-z^{2}\right) d z$.
6. Define analyticity of a function at a point.
7. Determine whether the function $f(z)=2 z^{2}-3 i-z e^{\cos z}+e^{-z}$ is entire. Justify
8. Compute the derivative of $\sinh z$.
9. State maximum modulus principle.
10. Write the Maclaurin series of $\frac{1}{1-z^{2}}$ when $|z|<1$.
11. How do you differentiate a power series? What is the radius of convergence of the derived series?
12. Compute the residue of $\exp \left(\frac{1}{z}\right)$ at $z=0$.

$$
(12 \times 1=12 \text { Marks })
$$

Section B

Answer any ten questions. Each question carries 4 marks.
13. Show that differentiable functions are continuous.
14. Determine at which points $f(z)=|z|^{2}$ is analytic.
15. Verify that $u(x, y)=e^{-y} \sin x$ is harmonic.
16. Use Cauchy Riemann equations in polar coordinates to compute the derivative of $f(z)=1 / z$.
17. Show that $e^{\left(z_{1}+z_{2}\right)}=e^{z_{1}} e^{z_{2}}$.
18. Obtain all the zeros of $\sin z$.
19. If $w(t)$ is a complex function of a real variable t, then show that $\operatorname{Re} \int_{a}^{b} w(t) d t=\int_{a}^{b} \operatorname{Re} w(t) d t$.
20. Evaluate the integral $\int_{C} f(z) d z$ where $f(z)=y-x-i 3 x^{2}$ and C is the line segment joining 0 and $1+i$.
21. Let C be the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$. Show that $\left|\int_{C} \frac{z+4}{z^{3}-1} d z\right| \leq 6 \pi / 7$.
22. Let C denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$. Evaluate $\int_{C} \frac{\cosh z}{z^{4}} d z$.
23. State and prove Morera's theorem.
24. Find the Laurent's series that represents the function $f(z)=z^{2} \sin \left(\frac{1}{z^{2}}\right)$ in the domain $0<|z|<\infty$.
25. What is an essential singularity? Give an example.
26. Determine the order of the pole of $f(z)=\frac{\tanh z}{z^{2}}$.

$$
(10 \times 4=40 \text { Marks })
$$

Section C

Answer any six questions. Each question carries 7 marks.
27. Suppose $f^{\prime}(z)=0$ in a (connected) domain. Show that $f(z)$ is constant.
28. Obtain the harmonic conjugate of $u(x, y)=y^{3}-3 x^{2} y$. Obtain an analytic function with $u(x, y)$ real part.
29. Define logarihmic function. Obtain a domain in which it is analytic and find its derivative.
30. True or false? Mean value theorem for derivatives hold for complex functions. Justify.
31. Evaluate $\int_{|z|=1} \frac{1}{z} d z$.
32. State and prove principle of deformation of paths.
33. State and prove Liouville's theorem.
34. Evaluate $\int_{C} \frac{d z}{z(z-2)^{4}}$ where C is the positively oriented circle $|z-2|=1$.
35. Evaluate using the method of residues: $\int_{0}^{2 \pi} \frac{1}{3+2 \cos \theta} d \theta$

Section D

Answer any two questions. Each question carries 13 marks.
36. Derive Cauchy Riemann equations with necessary assumptions.
37. Show that a continuous function $f(z)$ defined on a domain D has an antiderivative if and only if the value the integral $\int_{C} f(z) d z=0$ for every closed contour C lying in D.
38. Obtain the Laurent series expansion of $f(z)=\frac{-1}{(z-1)(z-2)}$ valid in the domains $|z|<1,1<|z|<2$ and $2<|z|<\infty$.

