18U603

(Pages: 3

SIXTH SEMESTER B.Sc. DEGREE

(CUCBCSS (Regular/Supplementar CC15U MAT6 B11/ CC18U MAT6 B

(Mathematics - Co (2015 Admission

Time: Three Hours

Section A

Answer all questions. Each question carries 1 mark.

- 1. By the method of false position, write the first approximation to the root of f(x) = 0.
- 2. Write the secant formula for finding a root of f(x) = 0.
- 3. Define the mean operator and write a relation connecting μ and E.
- 4. Show that $\Delta = E\nabla$.
- 5. State Gauss's backward interpolation formula.
- 6. Define divided differences for the points $(x_0, y_0), \dots, (x_n, y_n)$.
- 7. Write the formula for computing $\frac{dy}{dx}\Big|_{x_0}$, given a set of *n* values of (x, y).
- 8. State the general formula for numerical integration.
- 9. Find the characteristic equation of the matrix
- 10. Define spectral radius of a matrix.
- 11. Write Milne's predictor formula.
- 12. Write the fourth order Runge-Kutta formula for solving a first order initial value problem.

Section B

Answer any *ten* questions. Each question carries 4 marks.

- 13. Explain the method of iteration to find a root of f(x) = 0.
- 15. Show that (i) $\Delta = \nabla E = \delta E^{1/2}$ (ii) $E = e^{hD}$, where *E* is the shift operator and *D* is the differential operator.
- 16. Prove that the n^{th} divided differences of a polynomial of degree n is a constant.
- 17. Construct Newton's forward interpolation polynomial for the data:

x	4	6	8	10
f(x)	1	3	8	16
	(1)		

3)	Name:
	Reg. No
EXAMINAT	ION, APRIL 2021
S-UG)	
ry/Improvemer	nt)
11 - NUMERI	CAL METHODS
ore Course)	
n onwards)	

Maximum: 120 Marks

	[5	0	1]	
Κ	0	-2	0.	
	l1	0	5]	

 $(12 \times 1 = 12 \text{ Marks})$

14. Solve $x^3 - 6x + 4 = 0$ to find a root between 0 and 1 using Newton Raphson method.

Turn Over

18. Evaluate $\sqrt{153}$ by Lagrange's interpolation formula from the table below:

x	150	152	154
У	12.247	12.329	12.410

19. Use Gauss' forward formula to find f(32) from the following data:

x	25	30	35	40
f(x)	0.2707	0.3027	0.3386	0.3794

20. Explain Trapezoidal rule of integration.

21. Decompose the matrix $\begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ in the LU form.

22. Solve the following system by Gauss elimination method.

$$x + y + z = 7$$
$$x + 2y + 3z = 16$$
$$x + 3y + 4z = 22$$

23. Solve the IVP $\frac{dy}{dx} = \frac{1}{x^2 + y}$, y(4) = 4 using Taylor's series method. Find y(4.1).

24. For $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1, find y(0.1) by Runge-Kutta second order formula.

25. For the differential equation $\frac{dy}{dx} = x^2(1+y), y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548,$

y(1.3) = 1.979. Compute y(1.4) by Adams-Bashforth method.

26. Write down the difference between Jacobi's method and Gauss-Seidel method.

$$(10 \times 4 = 40 \text{ Marks})$$

Section C

Answer any six questions. Each question carries 7 marks.

27. Using Ramanujan's method, find a root of $\sin x = 1 - x$.

28. Find a positive root of $xe^x = 1$ between 0 and 1 with tolerance 0.05% by bisection method.

29. Find x for sinh x = 62 from the following table:

x	4.80	4.81	4.82	4.83	4.84
$y = \sinh x$	60.7511	61.3617	61.9785	62.6015	63.2307

30. A rod is rotating in a plane about one end. The table gives the angle θ in radians at t seconds.

Find the angular velocity at t = 0.7 seconds.

t	0.0	0.2	0.4	0.6	0.8	1.0
θ	0.0	0.12	0.48	1.10	2.0	3.20

31. Solve the following system by LU decomposition.

$$5x - 2$$

$$7x + y$$

$$3x + 7$$

32. Find the inverse of the coefficient matrix using Gauss method:

$$3x + 2$$

$$2x + y$$

$$x + 3y$$

33. Determine the largest eigen value and the corresponding eigen vector of the matrix

$$\begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$$

34. Find y(0.5) by modified Euler's method with h = 0.1 to solve the IVP

$$\frac{dy}{dx} = x + y^2, \ y(0) = 1.$$

35. Using Picard's method solve $\frac{dy}{dx} = x(1 + x^3y)$, y(0) = 3 and find y(0.2).

Section D

Answer any two questions. Each question carries 13 marks.

36. Find the number of students who obtained marks between 60 and 70 using Gauss'

backward formula from the table below:

Marks	0-40	40-60	60-80	80-100	100-120
No: of students	250	120	100	70	50

37. Solve the system of equations by Gauss Jordan method.

$$-2x +$$

$$-x - y$$

$$-x-y$$

38. Evaluate
$$\int_0^6 \frac{1}{1+x^2} dx$$
 with $h = 1$ using

(b) Simpson's $\frac{1}{3}$ rule (c) Simpson's $\frac{3}{8}$ rule. $(2 \times 13 = 26 \text{ Marks})$

18U603

2y + z = 4-5z = 87y + 4z = 102y + 4z = 7+ z = 4+5z = 2

 $(6 \times 7 = 42 \text{ Marks})$

10x - 2y - z - w = 3-2x + 10y - z - w = 15-x - y + 10z - 2w = 27-2z + 10w = -9