Name:
Reg. No...

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 202 (CUCBCSS-UG)
 (Regular/Supplementary/Improvement)

CC15U MAT6 B11/ CC18U MAT6 B11 - NUMERICAL METHODS

(Mathematics - Core Course)

(2015 Admission onwards)
Time: Three Hours

Section A

Answer all questions. Each question carries 1 mark

1. By the method of false position, write the first approximation to the root of $f(x)=0$.
2. Write the secant formula for finding a root of $f(x)=0$.
3. Define the mean operator and write a relation connecting μ and E.
4. Show that $\Delta=E \nabla$.
5. State Gauss's backward interpolation formula.
6. Define divided differences for the points $\left(x_{0}, y_{0}\right), \ldots \ldots\left(x_{n}, y_{n}\right)$.
7. Write the formula for computing $\left.\frac{d y}{d x}\right|_{x_{0}}$, given a set of n values of (x, y).
8. State the general formula for numerical integration.
9. Find the characteristic equation of the matrix $\left[\begin{array}{ccc}5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5\end{array}\right]$
10. Define spectral radius of a matrix.
11. Write Milne's predictor formula.
12. Write the fourth order Runge-Kutta formula for solving a first order initial value problem.

Section B

Answer any ten questions. Each question carries 4 marks.
13. Explain the method of iteration to find a root of $f(x)=0$.
14. Solve $x^{3}-6 x+4=0$ to find a root between 0 and 1 using Newton Raphson method.
15. Show that (i) $\Delta=\nabla E=\delta E^{1 / 2}$ (ii) $E=e^{h D}$, where E is the shift operator and D is the differential operator.
16. Prove that the $n^{\text {th }}$ divided differences of a polynomial of degree n is a constant.
17. Construct Newton's forward interpolation polynomial for the data:

x	4	6	8	10
$f(x)$	1	3	8	16

18. Evaluate $\sqrt{153}$ by Lagrange's interpolation formula from the table below:

x	150	152	154
y	12.247	12.329	12.410

19. Use Gauss' forward formula to find $f(32)$ from the following data:

x	25	30	35	40
$f(x)$	0.2707	0.3027	0.3386	0.3794

20. Explain Trapezoidal rule of integration.
21. Decompose the matrix $\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$ in the LU form.
22. Solve the following system by Gauss elimination method.

$$
\begin{aligned}
& x+y+z=7 \\
& x+2 y+3 z=16 \\
& x+3 y+4 z=22
\end{aligned}
$$

23. Solve the IVP $\frac{d y}{d x}=\frac{1}{x^{2}+y}, y(4)=4$ using Taylor's series method. Find $y(4.1)$.
24. For $\frac{d y}{d x}=\frac{y-x}{y+x}, \quad y(0)=1$, find $y(0.1)$ by Runge-Kutta second order formula.
25. For the differential equation $\frac{d y}{d x}=x^{2}(1+y), y(1)=1, y(1.1)=1.233, y(1.2)=1.548$, $y(1.3)=1.979$. Compute $y(1.4)$ by Adams-Bashforth method.
26. Write down the difference between Jacobi's method and Gauss-Seidel method.
($10 \times 4=40$ Marks $)$

Section C

Answer any six questions. Each question carries 7 marks.
27. Using Ramanujan's method, find a root of $\sin x=1-x$.
28. Find a positive root of $x e^{x}=1$ between 0 and 1 with tolerance 0.05% by bisection method.
29. Find x for $\sinh x=62$ from the following table:

x	4.80	4.81	4.82	4.83	4.84
$y=\sinh x$	60.7511	61.3617	61.9785	62.6015	63.2307

30. A rod is rotating in a plane about one end. The table gives the angle θ in radians at t seconds.

Find the angular velocity at $t=0.7$ seconds.

t	0.0	0.2	0.4	0.6	0.8	1.0
θ	0.0	0.12	0.48	1.10	2.0	3.20

31. Solve the following system by LU decomposition.

$$
\begin{aligned}
& 5 x-2 y+z=4 \\
& 7 x+y-5 z=8 \\
& 3 x+7 y+4 z=10
\end{aligned}
$$

32. Find the inverse of the coefficient matrix using Gauss method:

$$
\begin{aligned}
& 3 x+2 y+4 z=7 \\
& 2 x+y+z=4 \\
& x+3 y+5 z=2
\end{aligned}
$$

33. Determine the largest eigen value and the corresponding eigen vector of the matrix

$$
\left[\begin{array}{ccc}
1 & 3 & -1 \\
3 & 2 & 4 \\
-1 & 4 & 10
\end{array}\right]
$$

34. Find $y(0.5)$ by modified Euler's method with $h=0.1$ to solve the IVP

$$
\frac{d y}{d x}=x+y^{2}, y(0)=1
$$

35. Using Picard's method solve $\frac{d y}{d x}=x\left(1+x^{3} y\right), y(0)=3$ and find $y(0.2)$.

Section D

Answer any two questions. Each question carries 13 marks

36. Find the number of students who obtained marks between 60 and 70 using Gauss' backward formula from the table below:

Marks	$0-40$	$40-60$	$60-80$	$80-100$	$100-120$
No: of students	250	120	100	70	50

37. Solve the system of equations by Gauss Jordan method.

$$
\begin{aligned}
& 10 x-2 y-z-w=3 \\
& -2 x+10 y-z-w=15 \\
& -x-y+10 z-2 w=27 \\
& -x-y-2 z+10 w=-9
\end{aligned}
$$

38. Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ with $h=1$ using
(a) Trapezoidal rule
(b) Simpson's $1 / 3$ rule
(c) Simpson's $3 / 8$ rule.
($\mathbf{2} \times \mathbf{1 3}=\mathbf{2 6}$ Marks)
