(Pages: 2)

Reg. No..... Name:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2021 (CUCBCSS-UG) (Regular/Supplementary/Improvement) CC15U MAT6 B12/CC18U MAT6 B12 -NUMBER THEORY AND LINEAR ALGEBRA

(Mathematics - Core Course)

(2015 Admission onwards)

Time: Three Hours

Total: 120 Marks

Part A

Answer **all** questions. Each question carries 1 mark.

- 1. Write two numbers which are prime to each other.
- 2. Prove or disprove: If a|b and a|c then $a^2|bc$.
- 3. Write a linear Diophantine equation.
- 4. Express 360 in the canonical form.
- 5. Translate $(1001111)_2$ to decimal system.
- 6. State Wilson's theorem
- 7. Find $\tau(18)$.
- 8. Give an example for a multiplicative function.
- 9. Define Euler's phi-function.
- 10. Give an example for a 2 dimensional vector space.
- 11. Find a basis for $\mathbb{R}_2[x]$ over \mathbb{R}
- 12. Give an example for a linear map from \mathbb{R} to \mathbb{R}^2 .

 $(12 \times 1 = 12 \text{ Marks})$

Part B

Answer any *ten* questions. Each question carries 4 marks.

- 13. Show that the square of any odd integer is of the form 8k + 1.
- 14. Find the gcd(26, 382) and express it as the linear combination of 26 and 382.
- 15. Find all integer solutions of 14x + 16y = 15.
- 16. True or false: The number of primes is finite. Justify your answer.
- 17. Find all prime numbers that divide 50!
- 18. Find the remainder obtained when $1! + 2! + 3! + \cdots + 99! + 100!$ is devided by 12.
- 19. Show that 8^{th} power of any number is of the form 17m or $17m \pm 1$.

18U604

- 20. Find the number and sum of divisors of 4116.
- 21. Find the number of zeros with which the decimal representation of 50! terminates.
- 22. Find all subspaces of \mathbb{R}^3 over \mathbb{R} .
- 23. Check whether (2, 6, -4), (3, 9, -6) are linearly independent in \mathbb{R}^3 .
- 24. Define dimension of a vector space. Give example of a vector space of infinite dimension.
- 25. Show that f^{\rightarrow} is inclusion preserving, if $f: U \longrightarrow V$ is a linear map.
- 26. Find Ker f where f is the i^{th} projection map from \mathbb{R}^n to \mathbb{R} .

 $(10 \times 4 = 40 \text{ Marks})$

Part C

Answer any *six* questions. Each question carries 7 marks.

- 27. Determine all solutions of the Diophantine equation 54x + 21y = 906.
- 28. Compute the remainder when 3^{247} is divided by 25.
- 29. Solve the linear congruence $12x \equiv 48 \pmod{18}$.
- 30. Find the remainder when 18! is divided by 23.
- 31. Let V be a vector space and U, W are subspaces of V. Prove that $U \cap W$ is a subspace of V. Check whether $U \cup W$ is a vector space.
- 32. Define linear independent set. Show that no linear independent subset of a vector space V can contain O_V .
- 33. Show that a linear map $f: U \longrightarrow V$ is injective if and only if $Ker f = \{0_U\}$.
- 34. Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ be $T(x_1, x_2, x_3) = (x_1, x_1 + x_2, x_1 + x_2 + x_3, x_3)$. Verify dimension theorem for T.

$(6 \times 7 = 42 \text{ Marks})$

Part D

Answer any *two* questions. Each question carries 13 marks.

- 35. Solve the linear congruence $17x \equiv 9 \pmod{276}$.
- 36. State and prove Fermat's little theorem. Is the converse of the Fermat's little theorem true? Justify your answer.
- 37. State and Prove Dimension theorem.

 $(2 \times 13 = 26 \text{ Marks})$
