\qquad

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2021

(CUCBCSS-UG)

(Regular/Supplementary/Improvement)
 CC15U MAT6 B12/CC18U MAT6 B12 NUMBER THEORY AND LINEAR ALGEBRA

(Mathematics - Core Course)
(2015 Admission onwards)
Total : 120 Marks
Time: Three Hours

Part A

Answer all questions. Each question carries 1 mark.

1. Write two numbers which are prime to each other.
2. Prove or disprove: If $a \mid b$ and $a \mid c$ then $a^{2} \mid b c$.
3. Write a linear Diophantine equation.
4. Express 360 in the canonical form.
5. Translate $(1001111)_{2}$ to decimal system.
6. State Wilson's theorem
7. Find $\tau(18)$.
8. Give an example for a multiplicative function.
9. Define Euler's phi-function.
10. Give an example for a 2 dimensional vector space.
11. Find a basis for $\mathbb{R}_{2}[x]$ over \mathbb{R}
12. Give an example for a linear map from \mathbb{R} to \mathbb{R}^{2}.

$$
(12 \times 1=12 \text { Marks })
$$

Part B

Answer any ten questions. Each question carries 4 marks.
13. Show that the square of any odd integer is of the form $8 k+1$.
14. Find the $\operatorname{gcd}(26,382)$ and express it as the linear combination of 26 and 382.
15. Find all integer solutions of $14 x+16 y=15$.
16. True or false: The number of primes is finite. Justify your answer.
17. Find all prime numbers that divide 50 !
18. Find the remainder obtained when $1!+2!+3!+\cdots+99!+100$! is devided by 12 .
19. Show that $8^{\text {th }}$ power of any number is of the form $17 m$ or $17 m \pm 1$.
20. Find the number and sum of divisors of 4116.
21. Find the number of zeros with which the decimal representation of 50 ! terminates.
22. Find all subspaces of \mathbb{R}^{3} over \mathbb{R}.
23. Check whether $(2,6,-4),(3,9,-6)$ are linearly independent in \mathbb{R}^{3}.
24. Define dimension of a vector space.Give example of a vector space of infinite dimension.
25. Show that $f \rightarrow$ is inclusion preserving, if $f: U \longrightarrow V$ is a linear map.
26. Find $\operatorname{Ker} f$ where f is the $i^{\text {th }}$ projection map from \mathbb{R}^{n} to \mathbb{R}.
(10 $\times 4=40$ Marks $)$

Part C

Answer any six questions. Each question carries 7 marks.
27. Determine all solutions of the Diophantine equation $54 x+21 y=906$.
28. Compute the remainder when 3^{247} is divided by 25 .
29. Solve the linear congruence $12 x \equiv 48(\bmod 18)$.
30. Find the remainder when 18 ! is divided by 23 .
31. Let V be a vector space and U, W are subspaces of V. Prove that $U \cap W$ is a subspace of V. Check whether $U \cup W$ is a vector space.
32. Define linear independent set. Show that no linear independent subset of a vector space V can contain O_{V}.
33. Show that a linear map $f: U \longrightarrow V$ is injective if and only if $\operatorname{Ker} f=\left\{0_{U}\right\}$.
34. Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}$ be $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, x_{3}\right)$. Verify dimension theorem for T.
$(6 \times 7=42$ Marks $)$

Part D

Answer any two questions. Each question carries 13 marks.
35. Solve the linear congruence $17 x \equiv 9(\bmod 276)$.
36. State and prove Fermat's little theorem. Is the converse of the Fermat's little theorem true? Justify your answer.
37. State and Prove Dimension theorem.

