\qquad
\qquad
FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2021 (CUCBCSS-UG)
CC17U CSC4 C04 - DATA STRUCTURE USING C PROGRAMMING
(Computer Science)
(2017, 2018 Admissions - Supplementary/Improvement)
Time: Three Hours
Maximum: 64 Marks

PART A

Answer all questions. Each question carries 1 mark.

1. Linked list is a \qquad data structure
(a) Dynamic
(b) Static
(c) Indexed
(d) None
2. is a non linear data structure.
3. The number of elements of an array $\mathrm{A}[1: \mathrm{N}]=$ \qquad
4. The prefix form of the expression $(\mathrm{A} * \mathrm{~B}-\mathrm{C})$ is \qquad
5. In queue elements are removed from \qquad
6. In row major order representation of a two dimensional array A, the address of $(i, j)^{\text {th }}$ element is calculated as \qquad
7. A linked list with two links each pointing to the predecessor and successor of a node is known as \qquad
8. Under flow condition of Circular Queue is \qquad
9. Best case time complexity of selection sort is \qquad

$$
(9 \times 1=9 \text { Marks })
$$

PART B

Answer all questions. Each question carries 2 marks.
10. Briefly discuss about the classification of various data structures available in C
11. What is time complexity?
12. Define a Dequeues.
13. What are the advantages of linked list over array?
14. What are the applications of queues?

$$
(5 \times 2=10 \text { Marks })
$$

PART C

Answer any five questions. Each question carries 5 marks.
15. Explain how PUSH and POP operations are performed on a stack.
16. Write an algorithm to add a new node at the specified location of a singly linked list
17. Write an algorithm to delete an element from the end of the double linked list.
18. What is a priority Queue? Explain different priority queue representations.
19. Consider a circular queue initially having 3 elements $\mathrm{A}, \mathrm{B}, \mathrm{C}$ inserted in same sequence and having a maximum capacity of 5 elements. Show the current value of FRONT \& REAR.Delete2 elements from the queue and insert 4 more elements (D, E, F, and G) in the queue and show the final position of REAR \& FRONT.
20. Write an algorithm to search an element in a singly linked list.
21. Explain the way to represent a sparse matrix using arrays.
22. Explain the bubble sort technique.

$$
(5 \times 5=25 \text { Marks })
$$

PART D

Answer any two questions. Each question carries 10 marks.
23. Explain all array operations.
24. Explain linear search and binary search with example.
25. What is a circular queue? Write the algorithms for insertion and deletion operations on a circular queue.

$$
(2 \times 10=20 \text { Marks })
$$

