\qquad
\qquad
FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2021 (CUCBCSS-UG)

CC15U PH4 C04 - ELECTRICITY, MAGNETISM AND NUCLEAR PHYSICS
(Physics- Complimentary Course) (2015 to 2018 Admission - Supplementary/Improvement)

Time: Three Hours
Maximum: 64 Marks

Section A

Answer all questions. Each question carries 1 mark.

1. Work done in moving a charge between two equipotential points is \qquad
2. When a dielectric is placed between the plates of a capacitor, the electric field between the plates \qquad
3. The unit of resistivity is \qquad
4. What is the unit of temperature coefficient of resistance?
5. The magnetic susceptibility is negative for \qquad
6. The angle of dip at equator is \qquad
7. What nuclear reaction takes place in sun?
8. Mention a unit of radioactivity.
9. Particles which are made up of three quarks are known as \qquad
10. LHC is \qquad

Section B

Answer all questions. Each question carries 2 marks.
11. The electric field, E is zero at a point. Is the electric potential V necessarily zero at that point? Give example.
12. Compare between Coulomb force and Nuclear force.
13. How Galvanometer, Voltmeter and Ammeter differ?
14. Define the three elements of earth.
15. Distinguish between half life and mean life.
16. Find the ratio of the nuclear radii of Gold isotope ${ }_{79} \mathbf{A u}{ }^{197}$ and Silver isotope ${ }_{47} \mathbf{A g}^{\mathbf{1 0 7}}$.
17. What do you mean by resonance particles?

$$
(7 \times 2=14 \text { Marks })
$$

Section C

Answer any three questions. Each question carries 4 marks.
18. Distinguish between diamagnetic, paramagnetic and ferromagnetic materials.
19. Write a note on nuclear waste disposal
20. Discuss the phenomenon of cosmic ray showers.
21. Discuss the working of semiconductor detector.
22. Distinguish between nuclear fission and nuclear fusion. Give an equation for each process.

$$
(3 \times 4=12 \text { Marks })
$$

Section D

Answer any three questions. Each question carries 4 marks.
23. A parallel plate capacitor of plate area $10^{-2} \mathrm{~m}^{2}$ and plate separation $10^{-2} \mathrm{~m}$ is charged to 100 Volts. Then, after removing the charging battery, a slab of insulating material of thickness $0.5 \times 10^{-2} \mathrm{~m}$ and relative permittivity 7 is inserted between the plates. Calculate the potential difference between the plates and the capacitance (with dielectric present)
24. Two charges $+Q$ and $-3 Q$ are separated by a distance of 1 m . At what points on its axis is the potential zero?
25. One gram of a radioactive substance disintegrates at the rate of 3.7×10^{10} disintegrations per second. The atomic weight of the substance is 226 . Calculate its mean life.
26. A galvanometer has a resistance of 50Ω and a current of 1 mA is needed to give full scale deflection. What is the resistance needed and how is to be connected to convert the galvanometer into \quad (a) an ammeter of 1 A range \quad (b) a voltmeter of 5 V range?
27. A tangent galvanometer has a coil of 50 turns of mean radius 50 cm . If the value of B_{H} at a place is $0.3 \times 10^{-4} \mathrm{~T}$, calculate the current in amperes to produce a deflection of 45°.
($\mathbf{3} \times 4=12$ Marks)

Section E

Answer any two questions. Each question carries 8 marks.
28. With a neat diagram and necessary theory, describe the working of a cyclotron accelerator. Obtain the expression for kinetic energy of the accelerated ion. Also discuss the limitations
29. State and prove Guass's law. Use this to find the electric field due to infinitely plane parallel sheets
30. Describe how will you find out the ratio of magnetic moment of two magnets using Searle's vibration magnetometer.
31. Explain how Carey Foster's Bridge can be used to determine the temperature coefficient of resistance
($2 \times 8=16$ Marks)

