\qquad

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2021

(CUCBCSS - UG)
CC15U MAT4 C04 - MATHEMATICS - IV
(Mathematics - Complementary)
(2015 to 2018 Admissions - Supplementary/Improvement)
Time: Three Hours
Maximum: 80 Marks

PART A

Answer all questions. Each question carries 1 mark.

1. Write the general form Euler Cauchy equation.
2. Define a periodic function give an example
3. Write the characteristic equation of $y^{\prime \prime}+a y^{\prime}+b y=0$.
4. Prove that $L(1)=\frac{1}{s}, s>0$.
5. What is the Laplace transform of sinh $a t$?
6. If $f(t)=0$, find $\mathcal{L}(0)$.
7. State Linearity property of Laplace transform.
8. Define unit step function
9. Is the function $x \cos n x$ odd, even neither odd nor even?
10. Write two dimensional wave equation.
11. Write the iteration formula for the Picard's method.
12. What is the error term in trapezoidal rule?
(12×1 = 12 Marks)

PART B

Answer any nine questions. Each question carries 2 marks.
13. Find the Wronskian of $e^{a x}$ and $e^{b x}$
14. Find the general solution of $y^{\prime \prime}+2 y^{\prime}+5 y=0$
15. Apply the operator $(\mathrm{D}-2)(\mathrm{D}+1)$ on $y=x e^{2 x}$.
16. Find a_{0} and a_{n} of the Fourier series $f(x)=\left\{\begin{array}{cc}k & -\pi<x<0 \\ -k & 0<x<\pi\end{array}\right\}$
17. Find the Laplace transform of $e^{-3 t} \sin ^{2} t$.
18. Find the Laplace transform of $(t+1)^{2} e^{t}$.
19. Prove that $\mathcal{L}(\cos a t)=\frac{s}{s^{2}+a^{2}}$.
20. Show that $f * g=g * f$ where $f * g$ denote the convolution of two functions f and g.
21. Compute y_{3} by Euler method with $h=0.2$ for IVP $y^{\prime}=x+y, y(0)=0$
22. Solve the system of partial differential equation $u_{x x}=0, u_{y y}=0$.
23. Find $y_{2}(x)$ for initial value problem $y^{\prime}=1+y^{2}, y(0)=0$ by Picard's method.
24. Use Trapezoidal rule with $n=4$ to estimate $\int_{0}^{2} \frac{1}{1+x} d x$. Also find the upper bound for error in the above approximation.
($9 \times 2=18$ Marks)

PART C

Answer any six questions. Each question carries 5 marks.
25. Find the general solution of the differential equation $y^{\prime \prime}-2 y^{\prime}=12 x-10$
26. Solve the following initial value problem

$$
4 x^{2} y^{\prime \prime}+24 x y^{\prime}+25 y=0, \quad y(1)=2, \quad y^{\prime}(1)=-6
$$

27. Solve $\left(D^{2}-2 D+1\right) y=10 e^{x} \sin x$
28. Find the inverse Laplace transform of $\frac{5 s^{2}-15 s-11}{(s+1)(s-2)^{3}}$.
29. Find solutions $u(x, y)$ of the function $u_{x}=2 u_{y}+u$ by separating variables.
30. Show that $\mathcal{L}^{-1}\left[\ln \left(1+\frac{\omega^{2}}{s^{2}}\right)\right]=\frac{2}{t}(1-\cos \omega t)$.
31. Solve the integral equation $y(t)=1+\int_{0}^{t} y(t) d t$
32. Find the half range sine series of the function $f(x)=\left\{\begin{array}{c}x, \text { if } 0<x<\frac{\pi}{2} \\ \pi-x, \text { if } \frac{\pi}{2} \leq x<\pi\end{array}\right.$
33. Divide range into 10 equal parts to find $\int_{0}^{\pi} \sin x d x$ using Simpsons rule.
($6 \times 5=30$ Marks $)$

PART D

Answer any two questions. Each question carries 10 marks.
34. Using the Laplace transformation solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}-3 y=\sin t, y(0)=0, y^{\prime}(0)=0
$$

35. Find the inverse Laplace transform of
(a) $\frac{1}{\left(s^{2}+\omega^{2}\right)^{2}}$
(b) $\ln \frac{s^{2}+1}{(s-1)^{2}}$
36. Find the Fourier series of the function $f(x)=\pi \sin \pi x, 0<x<1$ with period $2 p=1$.
37. Using Runge-Kutta method Solve IVP $y^{\prime}=x+y, y(0)=0, h=0.2$ for $x=1$
