\qquad
\qquad

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS - UG)
(Regular/Supplementary/Improvement)
CC19U BCA1 C02 - DISCRETE MATHEMATICS
(Computer Application - Complementary Course)
(2019 Admission onwards)
Time : 2.00 Hours

Maximum : 60 Marks
Credit: 3

Part A (Short answer questions)

Answer all questions. Each question carries 2 marks.

1. Determine whether $[p \wedge(p \rightarrow q)] \rightarrow q$ is a tautology.
2. If $A=\{\alpha, \beta\}$ and $B=\{1,2,3\}$. Find $A \times B$.
3. Draw the truth table for the conjunction operator in a boolean algebra.
4. What is undirected graph and give an example?
5. Define circuit of a graph and give an example.
6. Prove or disprove : The degree of every vertex in a complete graph of n vertices is $n-1$.
7. Define bipartite graph and draw an example.
8. Draw a tree with two pendant vertices three pendant vertices.
9. Briefly explain the algorithm for shortest spanning tree.
10. Prove or disprove : The vertex connectivity of a tree is one.
11. What is the difference between weakly connected graph and strongly connected graph?
12. Define Euler line and Euler graph.
(Ceiling: 20 Marks)
Part B (Short essay questions - Paragraph)
Answer all questions. Each question carries 5 marks.
13. Evaluate the boolean expression where $a=2, b=3, c=5$ and $d=7$
a) $\sim\{(a \leq b) \wedge[\sim(c>d)]\}$
b) $\sim[(a>b) \vee(b \leq d)]$
14. Explain quantifiers with suitable examples.
15. Draw the logic gate circuit for the Boolean expression $(\overline{A . C}) \cdot(\overline{B+C})$.
16. Explain simple graph and isomorphism with suitable example.
17. Explain the concept of chromatic number on complete graph, cycles, wheel graph.
18. Explain the following:
a) Spanning tree.
b) Rank of a graph G.
c) Nullityof a graph G.
d) Branch of a tree.
e) Chord of a tree.
19. Explain the following:
a) Planar graph.
b) Kuratowski first graph.
c) Kuratowski second graph.
d) Planar representation of a graph.
(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. The question carries 10 marks.
20. If $U=\{1,2,3, \ldots, 10\}, A=\{1,2,3,4,5\}$ and $B=\{1,3,5,7,9\}$, find
(i) $(A \cup B)^{c}$
(ii) $A^{c} \cup B^{c}$
(iii) $A-B$
(iv) $B-A$
21. (i) Let $A=\{a, b\}, X$ denotes the power set of A. Then draw the Hasse diagram for the inclusion relation on X defined by $\subseteq=\left\{<A^{\prime}, A^{\prime \prime}>: A^{\prime} \subseteq A^{\prime \prime}, A^{\prime} \in X, A^{\prime \prime} \in X\right\}$.
(ii) Find the least member and greatest member, if any, in this poset.
(iii) Find the minimal members and maximal members, if any, in this poset.

$$
(1 \times 10=10 \text { Marks })
$$

