(2016-2018 Admissions - Supplementary)
Time: Three Hours
Maximum: 80 Marks

Section A

Answer all questions. Each question carries 1 mark.

1. The correct relationship between A.M., G.M. and H.M is.........
2. Best measure of dispersion is
3. The idea of rank correlation was given by
4. If A and B are disjoint events, then $P(A \cap B)$ is
5. The probability of drawing any one spade cards from a pack of cards is

Write true or false.
6. Third quartile is median.
7. $r=0$ indicates that there is no linear relationship between the variables.
8. The probability of all possible outcomes of a random experiment is always equal to one.
9. An event whose occurrence is inevitable is called an impossible.
10. If X is a random variable, then $P(X \leq x)$ is known as probability density function.
($10 \times 1=10$ Marks $)$

Section B

Answer all questions. Each question carries 2 marks.
11. List out the various measures of dispersion.
12. What is coefficient of variation.
13. Distinguish between mutually exclusive events and equally likely events
14. State the classical definition of probability.
16. Define random variable.
17. What are the properties of probability distribution functions?
($7 \times 2=14$ Marks)

Section C

Answer any three questions. Each question carries 4 marks.

18. If $\mathrm{P}(\mathrm{A})=0.5, \mathrm{P}(\mathrm{B})=0.2, \mathrm{P}(\mathrm{AB})=0.1$ find the probability of:
(i) At least one of the event occurs.
(ii) Exactly one of the event occurs.
19. Find the mean and variance of the first n natural numbers.
20. State and prove addition theorem of probability.
21. Let A and B be two events such that, $P(A \cup B)=0.8, P(A)=0.4$ and $P(A \cap B)=0.3$, then $P\left(A \cap B^{c}\right)$
22. The random variable X has the p.d.f: $f(x)=e^{-x}, o \leq x<\infty$. Find the p.d.f of the random variable $Y=2 X+1$.
($3 \times 4=12$ Marks)

Section D

Answer any four questions. Each question carries 6 marks.

23. Define mean deviation about mean. Show that standard deviation is not less than mean deviation about mean, for any discrete distribution.
24. Prove that correlation coefficient is independent of change of origin and scale
25. Obtain the rank correlation coefficient for the following data:

$$
\begin{array}{cccccccccccc}
x & : & 115 & 109 & 112 & 87 & 98 & 120 & 98 & 100 & 98 & 118 \\
y & : & 75 & 73 & 85 & 70 & 76 & 82 & 65 & 73 & 68 & 80
\end{array}
$$

26. The two regression lines are $3 x+12 y-10=0$ and $3 y+9 x-46=0$. Find (a) the means of X and Y , (b) the correlation coefficient.
27. Distinguish between probability density function and probability mass function
28. A random variable X has the following probability function

$$
f(x)= \begin{cases}k, & \text { if } x=0 \\ 2 k, & \text { if } x=1 \\ 3 k, & \text { if } x=2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Determine the value of k
(b) Find $P(X<2), \quad P(X \leq 2)$ and $P(0<X<2)$.

Section E

Answer any two questions. Each question carries 10 marks
29. (a) Find mean and median from the following data:

Marks	$:$	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
No of students	$:$	3	10	15	20	12	7	3

(b) Following table gives the distribution of deaths from Scarlet fever classified according to age. Find the variance of this frequency distribution:

Age $\quad . \quad 20-29 \quad 30-39 \quad 40-49 \quad 50-59 \quad 60-69 \quad 70-79 \quad 80-89$
No.of deaths : $\begin{array}{llllllll}10 & 24 & 18 & 12 & 8 & 5 & 3\end{array}$
30. Explain "rank correlation". Derive the formula for Spearman's rank correlation coefficient
31. (a) State and prove Baye's theorem.
(b) The probability that a doctor will diagnose a particular disease correctly is 0.6 . The probability that a patient will die by his treatment after correct diagnosis is 0.4 and the probability of death by wrong diagnosis is 0.7 . A patient of the doctor who had the disease died. What is the probability that his disease was not correctly diagnosed.
32. Let X be a random variable with pdf:
$f(x)= \begin{cases}k e^{-2 x}, & 0<x<\infty \\ 0, & \text { elsewhere } .\end{cases}$
(a) Find k.
(b) Obtain the pdf of $Y=X^{2}$.

