21U112S

(Pages: 2)

Name: Reg. No.:

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CUCBCSS-UG)

CC15U MAT1 C01 / CC18U MAT1 C01- MATHEMATICS

(Mathematics Complementary course)

(2016 to 2018 Admission - Supplementary/Improvement)

Time: 3.00 Hours

Maximum: 80 Marks

Part A

Answer *all* questions. Each question carries 1 mark.

1. $\lim_{x \to 0} \frac{\sin x}{x} = \dots?$

- 2. Does the function f(x) = |x 2| continuous at x = 2?
- 3. What is the slope of the tangent line to the parabola $y = x 3x^2$ at the point (1, -2)?

4. If
$$f(x) = \frac{1}{x-2}$$
, find $f'(2)$.

- 5. At any time t, the position of a moving particle along s-axis is given by $s = t^2 4t$. What is it's velocity when t = 3?.
- 6. What is the absolute minimum value of the function $f(x) = x^2 5$ on the interval $(-\infty, \infty)$?
- 7. Define point of inflection.
- 8. Give any pair of isomorphic graphs.
- 9. $\lim_{x \to \infty} \left(\pi \frac{2}{x^2} \right) = \dots?$
- 10. Find the differential of the function $y = x^4 2x^3 + 8$.
- 11. Evaluate $\sum_{k=1}^{5} k^2$.
- 12. Evaluate the integral $\int_0^3 x^2 dx$.

 $(12 \times 1 = 12 \text{ Marks})$

Part B

Answer any *nine* questions. Each question carries 2 marks.

13. Evaluate the limit $\lim_{x \to -5} \frac{x^2 + 3x - 10}{x + 5}$.

14. Discuss the type of discontinuity of the function $y = \sin\left(\frac{1}{x}\right)$ at x = 0,

- 15. State intermediate value theorem.
- 16. Where does the curve $y = \frac{x}{x-1}$ have slope -1?
- 17. Suppose the dollar cost of producing x washing machines is $C(x) = 2000 + 100x 0.1x^2$. Find the marginal cost when 100 washing machines are produced.
- 18. Find the critical points of the function $f(x) = -x^3 + 12x + 5$.

- 19. Evaluate the limit $\lim_{x\to-\infty} \frac{3x+7}{x^2-2}$.
- 20. Find the linearization of $f(x) = \sqrt{x^2 + 9}$ at x = -4.
- 21. Evaluate the limit $\lim_{x\to 0^+} (xlnx)$.
- 22. Express the sum $1 + \frac{3}{4} + \frac{5}{9} + \frac{7}{16} + \frac{9}{25}$ in sigma notation.
- 23. Find the average value of $f(x) = 3x^2 3$ on [0, 1].
- 24. Evaluate the integral $\int_0^{\pi} (1 + \cos x) dx$.

 $(9 \times 2 = 18 \text{ Marks})$

Part C

Answer any six questions. Each question carries 5 marks.

- 25. Using $\varepsilon \delta$ definition of limits prove that $\lim_{x \to x_0} k = k$.
- 26. Show that the function $f(x) = |\frac{xsinx}{x^2+2}|$ is continuous at every value of x.
- 27. Write an equation for the tangent to the parabola $y = x 2x^2$ at the point (1, -1).
- 28. Find all derivatives of the function $y = 6t^4 3t^3 + 7t 11$.
- 29. Verify mean value theorem for the function f(x) = logx on the interval [1, e].
- 30. Determine the constants a and b so that the curve $y = x^3 + ax^2 + bx$ has an inflection at the point (3, -9).
- 31. Evaluate the limit $\lim_{x\to 0^+} (cotx)^{sin2x}$.
- 32. Let $f(x) = x^3, 0 \le x \le 1$. Then prove that f is integrable over [0, 1].
- 33. Find the area of the region enclosed by the parabola $x = y^2$ and the line x = y + 2.

(6 × 5 = 30 Marks)

Part D

Answer any *two* questions. Each question carries 10 marks.

- 34. (i) Evaluate the limit $\lim_{x\to 2^-} \frac{x^2 3x + 2}{x^3 4x}$. (ii) Is there a real number that is one less than its 5th power?
- 35. Sketch the graph of $f(x) = \frac{(x+1)^2}{1+x^2}$.
- 36. Use definite integral to estimate the sum of the square roots of the first n positive integers, $\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}$.

 $(2 \times 10 = 20 \text{ Marks})$
