(Ceiling: 25 Marks)

Name: Reg.No:

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS - UG)

CC19U MTS1 B01 - BASIC LOGIC AND NUMBER THEORY

(Mathematics - Core Course)

(2019 Admission - Supplementary/Improvement)

Time : 2.5 Hours

Part A (Short answer questions)

Answer *all* questions. Each question carries 2 marks.

- 1. Which of the following are propositions? a) Toronto is the capital of canada. b) Come in.
- 2. Define exclusive disjunction.
- 3. Write idempotent laws and identity laws of logic.
- 4. Rewrite the sentence "Some chalkboards are black", symbolically.
- 5. Write
 - a) Hypothetical syllogism. b) Conjunction law.
- 6. Compute the first four terms of the sequence defined recursively : $a_0 = 1, a_n = a_{n-1} + n$
- 7. Find the quotient q and remainder r when -325 is divided by 13.
- 8. State the prime number theorem.
- 9. Find the five consecutive composite numbers less than 100.
- 10. Check whether the integers 8, 15 and 49 are pairwise relatively prime.
- 11. State Dirichlet's Theorem.
- 12. Give an example for diophantine equation.
- 13. Compute $\varphi(666)$.
- 14. Write the general form of linear congruence and define solution of linear congruence.
- 15. Find $3^{-1} \pmod{4}$.

Maximum : 80 Marks

Credit: 4

(Pages: 2)

Part B (Paragraph questions)

Answer *all* questions. Each question carries 5 marks.

- 16. Let S be the subset of \mathbb{N} that preserves the two properties: (i) The number $1 \in S$. (ii) For every $k \in \mathbb{N}$, if $k \in S$, then $k + 1 \in S$. Then prove that $S = \mathbb{N}$.
- 17. Using the Euclidean Algorithm, Express (4076, 2076) as a linear combination of 4076 and 2076.
- 18. Using canonical decompositions, find the gcd of each pair; 48, 162.
- 19. Using recursion, evaluate the lcm of 24,28,36,40?
- 20. If p is a prime, then show that $(p-1)! \equiv -1 (modp)$.
- 21. Compute the remainder when 43^{5555} is divided by 31.
- 22. Let p be a prime and a any integer such that p does not divide a. Then show that the solution of linear congruence $ax \equiv b(modp)$ is given by $x \equiv a^{p-2}b(modp)$.
- 23. Using Euler's theorem find the remainder when 245^{1040} is divided by 18.

(Ceiling: 35 Marks)

Part C (Essay questions)

Answer any *two* questions. Each question carries 10 marks.

24. 1) Explain

- a) Proof of contrapositive.
- b) Direct proof.
- c) Proof by cases.
- d) Constructive existence proof.
- e) Counter example method.
- 2) Prove that $\sqrt{5}$ is an irrational number.
- 25. State and prove Fundamental Theorem of Arithmetic.
- 26. a) Find the last digit in the decimal value of 1997^{1998¹⁹⁹⁹}.
 b) Find the remainder when (n² + n + 41)² is divided by 12.
- 27. a) Prove that a positive integer p is a prime if and only if $\phi(p) = p 1$.
 - b) State and prove Euler's theorem.