\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS-PG)
(Regular/Supplementary/Improvement)
CC19 MTH1 C05 - NUMBER THEORY
(Mathematics)
(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Prove that if f and g are multiplicative, so is their Dirichlet product $\mathrm{f} * \mathrm{~g}$
2. Find all integers n such that $\phi(n)=12$
3. If f is multiplicative then prove that $\mathrm{f}(1)=1$
4. Write a brief sketch of an elementry proof of the prime number theorem.
5. State Shapiro's Tauberian theorem.
6. Evaluate the Legendre's symbol (3/383).
7. Distinguish between plain text and cipher text.
8. Prove that 5 is a quadratic residue of an odd prime p if $p \equiv \pm 1(\bmod 10)$

$$
(8 \times 1=8 \text { Weightage })
$$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT 1

9. State and prove Legendre's identity.
10. State and prove Euler's summation formula.
11. Prove that $\frac{n}{\phi(n)}=\sum_{d / n} \frac{\mu^{2}(d)}{\phi(d)}$

UNIT II
12. Prove that the relation $M(x)=O(x)$ as $x \rightarrow \infty$ implies $\psi(x) \sim \mathrm{x}$ as $x \rightarrow \infty$.
13. Prove that $\lim _{x \rightarrow \infty}\left(\frac{M(x)}{x}-\frac{H(x)}{x \log x}\right)=0$.
14. Prove that there is a constant A such that

$$
\sum_{p \leq x} \frac{1}{p}=\log (\log x)+A+O\left(\frac{1}{\log x}\right), \quad \forall x \geq 2
$$

UNIT III

15. If p and q are distinct odd primes then prove that that $(\mathrm{p} / \mathrm{q})(\mathrm{q} / \mathrm{p})=(-1)(\mathrm{p}-1)(\mathrm{q}-1) 4$
16. In the 27 letter alphabet (with blank $=26$), use the affine enciphering transformation with key $\mathrm{a}=13, \mathrm{~b}=9$ to enchipher the message "HELP ME"
17. How will you authenticate a message in public key cryptosystem?

$$
(6 \times 2=12 \text { Weightage })
$$

PART C

Answer any two questions. Each question carries 5 weightage.
18. Prove that if both g and $f * g$ are multiplicative then f is also multiplicative and hence show that the set of all multiplicative function is a subgroup of the group of all arithmetical functions f with $\mathrm{f}(1) \neq 0$
19. Let $\{\mathrm{a}(\mathrm{n})\}$ be a non negative sequence such that $\sum_{n<x} a(n)\left[\frac{x}{n}\right]=x \log x+O(x), \forall x \geq 1$. Prove that there is a constant $\mathrm{B}>0$ such that: $\sum n \leq x a(n) \leq n B(x)$ for all $x \geq 1$.
20. State and prove Abel's identity.
21. State and prove Quadratic Reciprocity low.

