(Pages: 2)

Name:	•••
Reg. No:	

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19 MTH1 C05 – NUMBER THEORY

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Prove that if f and g are multiplicative, so is their Dirichlet product f*g
- 2. Find all integers n such that $\phi(n)=12$
- 3. If f is multiplicative then prove that f(1)=1
- 4. Write a brief sketch of an elementry proof of the prime number theorem.
- 5. State Shapiro's Tauberian theorem.
- 6. Evaluate the Legendre's symbol (3/383).
- 7. Distinguish between plain text and cipher text.
- 8. Prove that 5 is a quadratic residue of an odd prime p if $p \equiv \pm 1 \pmod{10}$

 $(8 \times 1 = 8 \text{ Weightage})$

PART B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT 1

- 9. State and prove Legendre's identity.
- 10. State and prove Euler's summation formula.
- 11. Prove that $\frac{n}{\phi(n)} = \sum_{d/n} \frac{\mu^2(d)}{\phi(d)}$

UNIT II

- 12. Prove that the relation M(x) = O(x) as $x \to \infty$ implies $\psi(x) \sim x$ as $x \to \infty$.
- 13. Prove that $\lim_{x \to \infty} \left(\frac{M(x)}{x} \frac{H(x)}{x \log x} \right) = 0.$
- 14. Prove that there is a constant A such that

$$\sum_{p \le x} \frac{1}{p} = \log(\log x) + A + O\left(\frac{1}{\log x}\right), \quad \forall x \ge 2.$$

21P105

UNIT III

- 15. If p and q are distinct odd primes then prove that that (p/q)(q/p)=(-1)(p-1)(q-1)4
- 16. In the 27 letter alphabet (with blank = 26), use the affine enciphering transformation with key a = 13, b = 9 to enchipher the message "HELP ME"
- 17. How will you authenticate a message in public key cryptosystem?

$(6 \times 2 = 12 \text{ Weightage})$

PART C

Answer any *two* questions. Each question carries 5 weightage.

- 18. Prove that if both g and f*g are multiplicative then f is also multiplicative and hence show that the set of all multiplicative function is a subgroup of the group of all arithmetical functions f with $f(1) \neq 0$
- 19. Let $\{a(n)\}$ be a non negative sequence such that $\sum_{n < x} a(n) \left[\frac{x}{n}\right] = x \log x + O(x), \forall x \ge 1$. Prove that there is a constant B > 0 such that: $\sum n \le x a(n) \le nB(x)$ for all $x \ge 1$.
- 20. State and prove Abel's identity.
- 21. State and prove Quadratic Reciprocity low.

 $(2 \times 5 = 10 \text{ Weightage})$
