\qquad
\qquad
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2021
(CBCSS-PG)
(Regular/Supplementary/Improvement)
CC19P MTH1 C04 - DISCRETE MATHEMATICS
(Mathematics)
(2019 Admission onwards)
Time: Three Hours Maximum: 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Define a Boolean function of n variables with an example.
2. If R is a partial order on a set X, then prove that $R-\{(x, x): x \in X\}$ is a strict partial order on X .
3. State why there doesn't exist a Boolean algebra having 25 elements.
4. Define cut vertex and cut edge with examples.
5. In any graph of n vertices, show that number of vertices of odd degree is even.
6. Define Identity graph with example.
7. Find a grammar that generates $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}+2} \mathrm{~b}^{\mathrm{n}}: \mathrm{n} \geq 0\right\}$
8. Find a dfa for the language $\mathrm{L}=\{\mathrm{w}:|\mathrm{w}| \bmod 5 \neq 0\}$ on $\Sigma=\{a, b\}$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

9. Let (X, \leq) be a poset and A is a nonempty finite subset of X . Prove that A has a maximum element if and only if it has a unique maximal element.
10. Write the Boolean function $f(a, b, c)=a+b+c^{\prime}$ in their disjunctive normal form.
11. Let $(X,+, .$,) be a Boolean algebra. Prove that $x .(x+y)=x$, for all $x, y \in X$

UNIT II

12. Prove that a graph is bipartite if and only if it has no odd cycle.
13. Prove that $\mathrm{K}_{3,3}$ is non-planar.
14. Prove that a simple cubic connected graph G has a cut vertex if and only if it has a cut edge.

UNIT III

15. Define a grammar and language with examples.
16. Find a dfa that accepts all strings on $\{0,1\}$ except those containing the substring 001.
17. Show that the language $\left\{a w a: w \in\{a, b\}^{*}\right\}$ is regular.

$$
(6 \times 2=12 \text { Weightage })
$$

PART C

Answer any two questions. Each question carries 5 weightage.
18. a) Prove that subalgebra of a Boolean algebra with induced operation is a Boolean algebra with same identity elements
b) Prove that every Boolean algebra is isomorphic to a power set Boolean algebra.
19. State and prove Whitney's theorem on 2 connected graph.
20. For a connected graph G prove that following statements are equivalent.
i) G is Eulerian.
ii) Degree of each vertex of G is an even positive integer.
iii) G is an edge disjoint union of cycles
21. Define non deterministic finite acceptor. Design an $n f a$ for the set $\left\{a b a b^{n}: n \geq 0\right\} U$ $\left\{a b a^{\mathrm{n}}: \mathrm{n} \geq 0\right\}$
($2 \times 5=10$ Weightage $)$

