\qquad
\qquad
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2021 (CBCSS-PG)

CC19P MTH1 C01 - ALGEBRA - I

(Mathematics)
(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Verify whether $\phi(x, y)=(x+y, 0)$ is an isometry of the plane.
2. Find all abelian groups of order 120 up to isomorphism.
3. Compute the factor group $\mathrm{Z} 2 \mathrm{XZ} / \ll(0,1)>$.
4. Find a maximal normal subgroup of Z. Justify your answer.
5. Find a composition series for Z 4 X Z9.
6. Find all zeroes of the polynomial $\mathrm{x}^{3}+2 \mathrm{x}+2$ in Z 7 .
7. Find the kernel of the evaluation homomorphism $\phi_{i}: Q[x] \rightarrow C$.
8. Find all ideals of Z 12 .
($8 \times 1=8$ Weightage $)$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT 1

9. a) Define simple group and give an example.
b) Show that if M is a maximal normal subgroup of G, then G / M is simple.
10. Explain the falsity of converse of Lagrange's theorem.
11. State and prove Burnsides formula.

UNIT 2

12. Show that if N is a normal subgroup of G and if H is any subgroup of G , then $\mathrm{HN}=\mathrm{NH}$.
13. Find the ascending central series of D4.
14. Show that for a prime number p , every group of order p^{2} is abelian.

UNIT 3
15. State and prove factor theorem.
16. Show that $x^{3}+3 x^{2}-8$ is irreducible over Q.
17. Show that the ring Z / nZ is isomorphic to Zn .

$$
(6 \times 2=12 \text { Weightage })
$$

PART C

Answer any two questions. Each question carries 5 weightage.
18. a) Show that the group Zm X Zn is cyclic if and only if m and n are relatively prime.
b) Show that if m divides the order of a finite abelian group G, then G has a subgroup of order n .
19. a) State and prove fundamental homomorphism theorem.
b) Show that A_{n} is a normal subgroup Sn_{n} and compute $\mathrm{S}_{\mathrm{n}} / \mathrm{A}_{\mathrm{n}}$.
c) Find the center of the group S3.
20. a) State and prove first Sylow theorem.
b) Show that no group of order 36 is simple.
21. a) State and prove division algorithm for $\mathrm{F}[\mathrm{x}]$.
b) Show that $25 x^{5}-9 x^{4}-3 x^{2}-12$ is irreducible overQ.
c) Find all generators of the cyclic multiplicative group of units of the field Z 5 .

