\qquad
\qquad

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022

(CUCBCSS-UG)
CC15U MAT2 C02 - MATHEMATICS
(Mathematics - Complementary)
(2015 to 2018 Admissions -Supplementary/Improvement)
Time: Three Hours
Maximum: 80 Marks

PART - A

Answer all questions. Each question carries 1 mark.

1. Prove that $\cosh \frac{x}{2}=\sqrt{\frac{\cosh x+1}{2}}$
2. $\int \tanh 5 x d x=\ldots$.
3. A function is said to be smooth if \qquad
4. Discuss the convergence of $\int_{1}^{\infty} \frac{1}{x^{2}} d x$
5. Find the $\mathrm{n}^{\text {th }}$ term of the sequence $2,1,4,3,6,5,8,7, \ldots \ldots \ldots .$.
6. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n+1}{n}$
7. Define the radius of convergence of a power series.
8. Replace the Cartesian equation $y^{2}=4 x$ by equivalent polar equation.
9. Identify the conic $r=\frac{12}{1-5 \sin \theta}$
10. Convert the rectangular coordinate $(-1,1,2)$ into cylindrical coordinates.
11. Find the boundary of the domain of the function $f(x, y)=\sqrt{y-x^{2}}$
12. $\lim _{(x, y) \rightarrow(1,1)} \frac{3 x^{2}-y^{2}+5}{x^{2}+y^{2}+2}=$ \qquad

PART - B

Answer any nine questions. Each question carries 2 marks.
13. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$
14. Differentiate $\cosh ^{-1} \sqrt{x+1}$ w.r.t x.
15. Evaluate $\lim _{n \rightarrow \infty} \frac{n-1}{n+1}$
16. Find the sum of the series $\sum_{n=1}^{\infty} \frac{2^{n}-1}{3^{n}}$
17. Prove that the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{n!}$ Converges absolutely
18. Find the Taylor series generated by $f(x)=e^{x}$ at $x=1$.
19. If $f(x)=\frac{1}{1-x}$, find series for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
20. Find the points of intersection of the curves $r=1+\cos \theta$ and $r=1-\cos \theta$
21. Sketch the surface $r=1+\cos \theta$
22. Find $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x^{2}+y^{2}, x=r-s, y=r+s$.
23. Find $\frac{d y}{d x}$ if $x e^{y}+\sin x y+y-\ln 2=0$
24. Find the linearization of $f(x, y)=x^{2}+y^{2}+1$ at the point $(1,1)$.

$$
(9 \times 2=18 \text { Marks })
$$

PART - C

Answer any six questions. Each question carries 5 marks.
25. Show that $\tanh ^{-1} x=\frac{1}{2} \ln \frac{1+x}{1-x}$ for all $-1<x<1$.
26. Find the volume of the solid generated by revolving the region bounded by the curve $y=x^{2}$ and the lines $y=0, x=2$ about the x-axis.
27. Find the length of the astroid $x^{2 / 3}+y^{2 / 3}=1$
28. Prove that $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$ is convergent.
29. Discuss the convergence of $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!n!}$
30. For what values of x does the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$ converges?
31. Find the area of the region enclosed by the cardioid $r=1-\cos \theta$
32. Show that the function $f(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}$ has no limit as $(x, y) \rightarrow(0,0)$.
33. Find the linearization of $f(x, y, z)=x z-3 y z+2$ at the point (1,1,2). Find an upper bound for the error incurred in replacing $f(x, y, z)$ by the linearization on the region $|x-1| \leq 0.01,|y-1| \leq 0.01,|z-2| \leq 0.02$
($6 \times 5=30$ Marks)

PART - D

Answer any two questions. Each question carries 10 marks.
34. Find the area of the surface generated by revolving the curve $y=x^{3}, 0 \leq x \leq 1 / 2$, about the x-axis.
35. Discuss the converges of $\frac{1}{1^{p}}-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\ldots \ldots \ldots \ldots$. for $p>0$.
36. Find the length of the cardioid $r=a(1+\cos \theta)$.

