\qquad

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - UG)
(Regular/Supplementary/Improvement)
CC19U MTS2 B02 / CC20U MTS2 B02 - CALCULUS OF SINGLE VARIABLE - I
(Mathematics - Core Course)
(2019 Admission onwards)
Time : 2.5 Hours

Maximum : 80 Marks
Credit : 4

Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Find the function of the transformed graph if
(i) $\backslash\left(f(x)=x^{\wedge} 2+x-1 \backslash\right)$: shifted vertically upward by 3 units.
(ii) $\backslash\left(f(x)=x^{\wedge} 2-4 \backslash\right)$:shifted horizontally to left by 2 units.
2. Find $\backslash\left(\backslash \lim _\{x \backslash \text { to } 2\} \backslash\right.$ frac $\left.\{\backslash \operatorname{sqrt}\{x+2\}-2\}\{x-2\} \backslash\right)$
3. Evaluate $\backslash\left(\lim _{-}\{x \backslash\right.$ to $\left.\backslash \operatorname{frac}\{\backslash p i\}\{4\}\} \backslash \operatorname{frac}\{\backslash \tan \wedge 2 x\}\{1+\backslash \cos x\} \backslash\right)$
4. What is a removable discontinuity? Give an example for it.
5. Find the rate of change of $\backslash(y=\backslash \operatorname{sqrt}\{2 x\} \backslash)$ with respect to x at $\backslash(x=2 \backslash)$.
6. Find the rate of change of $\backslash\left(y=2 x^{\wedge} 3+2 \backslash\right)$ with respect to x at $\backslash(x=2 .$\)
7. Suppose that $\backslash\left(y=2 x^{\wedge}\{3\}-x+1 \backslash\right)$.Use the differential $\backslash(d y \backslash)$ to approximate $\backslash(\backslash$ Delta $y \backslash)$ when (a) $\backslash(x \backslash)$ changes from 3 to 3.01 (b) $\backslash(x \backslash)$ changes from 3 to 2.98
8. Find the linearization of $\backslash\left(f(x)=x^{\wedge} 3+2 x^{\wedge} 2 \backslash\right)$ at $\backslash(a=1 \backslash)$
9. Find the relative maxima and relative minima of $f(x)=x^{3}-3 x^{2}-9 x+6$.
10. Define the inflection point of the graph of a function.
11. Discuss on infinite limit.
12. The vertical asymptote of the graph of $f(x)=1 /(x-1)$
13. Find $\backslash\left(\backslash\right.$ displaystyle \backslash int $\left.3 x^{\wedge} 5-2 x^{\wedge} 3+2-3 x^{\wedge}\{-1\} d x . \\right)$
14. Find the area of the region between the curves $\backslash(y=2 x \backslash)$ and $\backslash(y=x \wedge\{2\} \backslash)$ from $\backslash(3 \backslash)$ to $\backslash(4 \backslash)$
15. Find the work done in lifting a $\backslash(25 \backslash)$-lb object $\backslash(4 \backslash) \mathrm{ft}$ off the ground.
(Ceiling: 25 Marks)

Part B (Paragraph questions)
Answer all questions. Each question carries 5 marks.
16. Let $\backslash(f(x)=x+2 \backslash)$ and $\backslash\left(g(x)=2 x^{\wedge} 2+\backslash \operatorname{sqrt}\{x\} \backslash\right)$.
(i) $\backslash($ (gof) $(0) \backslash)$
(ii) $\backslash((f o f)(2) \backslash)$
(iii) $\backslash((f o g)(4) \backslash)$
(iv) $\backslash((\operatorname{gog})(1) \backslash)$
17. Let $\backslash\left(s(t)=\left(t^{\wedge} 2-1\right)^{\wedge} 2 \backslash\right)$ be position of a body moving along a coordinate line.Find the position , velocity and accelaration of the body at $\backslash(t=1 .$\)
18. (a) Find the absolute maximum and minimum values of $f(x)=x^{2}$ on $[-2,1]$.
(b) Find the critical numbers of $f(x)=x-3 x^{1 / 3}$
19. Use the definition of area, find the area of the region under the graph of $\backslash(f(x)=3 x-1 \backslash)$, on $\backslash([1,3] \backslash)$, by choosing $\backslash\left(C_{-}\{k\} \backslash\right)$ as the mid point.
20. Compute the Riemann sum for $\backslash(f(x)=-2 x+1 \backslash)$, on $\backslash([-1,2] \backslash)$ using the five subintervals $\backslash(n=6 \backslash)$ and choosing $\backslash\left(\mathrm{C}_{-}\{\mathrm{k}\} \backslash\right)$ as the left end point.
21. A solid has a circular base of radius 2 and its parallel cross sections perpendicular to its base are rectangles of height 2 . Find the volume of the solid.
22. Find the area of the surface obtained by revolving the graph of $\backslash\left(x=y^{\wedge}\{3\} \backslash\right)$ on the interval \backslash ($[0,1] \backslash$) about the $\backslash(y \backslash)$-axis
23. Find the center of mass of a system comprising three particles with masses 4,3 , and 5 grams, located at the points $(-3,-2),(-1,2)$ and $(2,4)$ respectively. (Assume that all distances are measured in centimeters)
(Ceiling: $\mathbf{3 5}$ Marks)

Answer any two questions. Each question carries 10 marks.
24. State and prove the Mean Value Theorem.
25. Sketch the graph of the function $f(x)=2 x^{3}-9 x^{2}+12 x-3$.
26. State and prove both Part 1 and Part 2 of Fundamental Theorem of Calculus.
27. Find the length of the astroid $\backslash\left(x^{\wedge}\{2 / 3\}+y^{\wedge}\{2 / 3\}=1 \backslash\right)$

