SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022 (CUCBCSS-UG)

CC15U ST2 C02 - PROBABILITY DISTRIBUTIONS

(Statistics - Complementary Course)
(2016 to 2018 Admissions - Supplementary/Improvement)
Time: Three Hours
Maximum: 80 Marks

Section A

[One word questions. Answer all questions. Each question carries 1 mark] Fill up the blanks:

1. If C is a constant $V(C)=\ldots \ldots \ldots$.
2. As $x \rightarrow-\infty$, the joint cumulative distribution $F(x, y)$ of a bivariate random variable (X, Y) becomes..........
3. For any finite real numbers a and $b, E(X+a)=b$. Then $E(X)=\cdots \cdots \cdot \cdot$
4. The discrete distribution possessing the memoryless property is $\ldots \ldots .$.
5. A family of distribution for which the mean is equal to variance is \qquad

Write true or false:
6. If X and Y are independent random variables, the $f(x, y)=f_{1}(x) f_{2}(y)$.
7. A curve is leptokurtic when $\beta_{2}>0$.
8. m.g.f does not exist always.
9. $E\left(X^{2}\right) \geq(E(X))^{2}$.
10. In a normal distribution M.D $=\frac{4}{5}$ S.D.

Section B

[One Sentence questions. Answer all questions. Each question carries 2 marks]
11. Define conditional variance of a random variable X given Y.
12. Define Mathematical expectation.
13. Define characteristic function.
14. Define m.g.f and how do you determine moments from it?
15. Define Kurtosis.
16. Find the m.g.f. of a Binomial distribution.
17. Define Cauchy distribution.

Section C

[Paragraph questions. Answer any three questions. Each question carries 4 marks]
18. Define bivariate probability distribution (X, Y) where X and Y are discrete random variables.
19. If X and Y are two random variables with joint p.d.f $f(x, y)=\frac{x+2 y}{18}$ where $(x, y)=$ $(1,1),(1,2),(2,1),(2,2)$ and 0 otherwise. Are the variables independent?
20. Define Gamma distribution. Establish its additive property.
21. In two independent random variables X and Y show that $M_{X+Y}(t)=M_{X}(t) M_{Y}(t)$.
22. Derive the mean and variance of Poisson distribution.

$$
(3 \times 4=12 \text { Marks })
$$

Section D

[Short Essay questions. Answer any four questions. Each question carries 6 marks]
23. If $f(x, y)=2\left(x+y-3 x^{2} y\right), 0<x<1$ and $0<y<1$ find the marginal and conditional pdfs.
24. Prove that for any two r.v.s X and $Y,[E(X Y)]^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)$.
25. State and prove the addition theorem on expectation.
26. Establish Renovsky formula.
27. Establish the lack of memory property of exponential distribution.
28. Obtain the mean of normal distribution.

$$
(4 \times 6=\mathbf{2 4} \text { Marks })
$$

Section E

[Essay questions. Answer any two questions. Each question carries 10 marks]
29. Derive the relation between raw and central moments and hence express first four central moments in terms of raw moments.
30. Derive the recurrence relation for a Poisson distribution for central moments and hence obtain skewness and kurtosis.
31. If the joint pdf of X and Y, is $f(x, y)=x+y, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1$. Find the coefficients of correlation and regression.
32. (i) State and prove Chebyshev's inequality. (ii) State Bernoulli's law of large numbers.

$$
(2 \times 10=20 \text { Marks })
$$

