\qquad

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - UG)
(Regular/Supplementary/Improvement)

CC19U BCA2 C04-OPERATION RESEARCH

(Mathematics - Complementary Course)
(2019 Admission onwards)
Maximum : 60 Marks
Credit : 3
Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. What is Operations Research ?
2. "Operations research is an aid for the executive in making his decisions based on scientific method analysis" Explain the statement briefly.
3. Define solution for a general LPP.
4. Define the degenerate solution.
5. What you mean by an unbalanced transportation problem?
6. What is the condition for the existence of alternative solutions to a transportation problem?
7. Write the mathematical formulatio of a general assignment problem.
8. How do you convert a maximization assignment problem into a minimization problem?
9. What you mean by predecessor activity?
10. Define independent float in an activity.
11. What are the limitations of Critical Path Method (CPM)?
12. A project schedule has to the following characteristics

Activity	$1-2$	$1-3$	$2-4$	$3-4$	$3-5$	$4-9$	$5-6$	$5-7$	$6-8$	$7-8$	$8-10$	$9-10$
Days	4	1	1	1	6	5	4	8	1	2	5	7

From the above information construct a network diagram.
(Ceiling: 20 Marks)
Part B (Short essay questions - Paragraph)
Answer all questions. Each question carries 5 marks.
13. Use two phase method to maximize
$\backslash(z=2 x+y \backslash)$
Subject to
$\backslash(-x+y \backslash l e 1 \backslash)$
$\backslash(x-2 y \backslash l e 2 \backslash)$
$\backslash(x+y \backslash l e-1 \backslash)$
$\backslash(x, y \backslash g e 0 \backslash)$
14. Give an algorithm to formulate a dual problem.
15. Find an initial basic feasible solution to the following transportation problem using Vogel's Approximation Method.

	D_{1}	D_{2}	D_{3}	D_{4}	Availability
O_{1}	22	26	34	28	500
O_{2}	32	36	28	20	600
O_{3}	42	48	26	20	800
Requirements	400	450	550	500	

16. A departmental head has three subordinates, and four tasks to be performed. The subordinates differ in efficiency, and the tasks differ in their intrinsic difficulty. His estimate, of the time each man would take to perform each task, is given in the table below:

	M_{1}	M_{2}	M_{3}
Task 1	9	26	15
Task 2	13	27	6
Task 3	35	20	15

How should the tasks be allocated, one to a man, so as to minimize the total man-hours?
17. Solve the following travelling salesman problem to minimize the cost per cycle:

From	To				
	A	B	C	D	E
A	I (infty) $)$	375	600	150	190
B	375	\} $\\ {(\text { (infty) })}$ 300 350 175 C 600 300 \} $\\ {\text { (inftyl) }}$ 350 500 D 160 350 350 ((infty) $)$ 300 E 190 175 500 300 I ((infty) $)$			

18. Write the optimum sequence Algorithm for n jobs on 2 machines.
19. We have 4 jobs each of which has to go through the machines $M_{j} j=1,2,3,4,5,6$ in the order A, B, C, D, E, F. Processing time in hours is given below:

	Machine A	Machine B	Machine C	Machine D	Machine E	Machine F
Job A	18	8	7	2	10	25
Job B	17	6	9	6	8	19
Job C	11	5	8	5	7	15
Job D	20	4	3	4	8	12

Determine a sequence of these four jobs that minimizes the total elapsed time.
(Ceiling: 30 Marks)
Part C (Essay questions)
Answer any one question. The question carries 10 marks.
20. Solve maximize $\backslash(z=5 x+10 y \backslash)$

Subject to $\backslash(5 x+8 y \backslash$ le $48 \backslash)$

$$
\backslash(5 x+3 y \backslash l e 48 \backslash)
$$

$$
\backslash(x+8 y \backslash l e 48 \backslash)
$$

$$
\backslash(x, y \backslash \operatorname{ge} 0 \backslash) .
$$

21. The following table shows all the necessary information on the available supply to each warehouse, the requirement of each market and the unit transportation cost from each warehouse to each market:

	M_{1}	M_{2}	M_{3}	M_{4}	Supply
W_{1}	5	2	4	3	22
$\mathrm{~W}_{2}$	4	8	1	6	15
$\mathrm{~W}_{3}$	4	6	7	5	8
Requirement	7	12	17	9	

Find the optimal schedule and minimum total shipping cost.

$$
(1 \times 10=10 \text { Marks })
$$

