\qquad
\qquad

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022

(CUCBCSS-UG)

CC15U MAT4 C04/ CC18U MAT4 C04 - MATHEMATICS IV

(Mathematics - Complementary Course)
(2015 to 2018 Admissions - Supplementary/Improvement)
Time: 3 Hours

Maximum: 8 Marks

Section A

Answer all questions. Each question carries 1 mark.

1. Solve the differential equation $y^{\prime \prime}-y=0$
2. Find the Wronskian of $e^{a x}$ and $e^{b x}$
3. Find a particular solution of $y^{\prime \prime}-y^{\prime}-2 y=6 e^{x}$
4. Find $\mathscr{L}\left(t^{2}\right)$
5. Evaluate $\mathscr{L}^{-1}\left(\frac{4}{(s-2)^{2}}\right)$
6. Find the Laplace transform of the Dirac delta function.
7. What is the fundamental period of $\cos t$?
8. Give an example of a function which is neither even nor odd.
9. At a point of discontinuity x_{0}, the Fourier series of a periodic function converges to \qquad
10. Write down the error estimate of Simpson's rule.
11. Write down the one dimensional heat equation.
12. Show that $u=2 x y$ is a solution of the Laplace equation.

Section B

Answer any nine questions. Each question carries 2 marks.
13. Find a general solution of $y^{\prime \prime}-4 y^{\prime}+4 y=0$
14. Solve $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$
15. Show that $y=e^{x}[2 \sin x-4 \cos x]$ is a particular solution of $\left(D^{2}+1\right) y=10 e^{x} \sin x$
16. Find $\mathscr{L}(\sin 2 t \sin 3 t)$
17. Prove that $f * g=g * f$.
18. Find $\mathscr{L}^{-1}\left(\frac{e^{-3 s}}{(s-1)^{4}}\right)$
19. Find a_{0} in the Fourier series expansion of $f(x)=x^{2},-\pi<x<\pi$.
20. Find the half range sine series of $f(x)=\pi-x, 0<x<\pi$.
21. Is $u=e^{2 t} \cos x$ a solution of the wave equation?
22. Prove that the solution of the partial differential equation $u_{x x}+4 u=0$ can be taken as $u=v(y) \cos 2 x+$ $w(y) \sin 2 x$
23. Using Picard's method find an approximate solution of $y^{\prime}=x+y, y(0)=1$.
24. Use the Trapezoidal rule with $n=4$ to estimate $\int_{0}^{2} \frac{1}{1+x} d x$

Section C

Answer any $\boldsymbol{s i x}$ questions. Each question carries 5 marks.
25. Find a general solution of $y^{\prime \prime}-3 y^{\prime}+2 y=4 x+e^{3 x}$
26. Using the method of variation of parameters solve $y^{\prime \prime}+y=\csc x$.
27. Find the Laplace transform of $f(t)=\frac{1-e^{t}}{t}$
28. Find the inverse Laplace transform of $\ln \frac{s+a}{s+b}$
29. Find a Fourier series to represent $f(x)$ in the interval $(-\pi, \pi)$ where $f(x)= \begin{cases}-k, & \text { if }-\pi<x<0 \\ k, & \text { if } 0 \leq x<\pi\end{cases}$
30. Find the Fourier series for $|x|$ in $[-\pi, \pi]$. Deduce that $\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$
31. By seperating the variables solve $u_{x}=2 u_{y}+u$
32. Find the deflection $u(x, t)$ of the string of length $L=\pi$ when $c^{2}=1$, the initial velocity is zero and the initial deflection is $k[\sin x-(1 / 2) \sin 2 x]$.
33. Using the improved Euler's method solve the initial value problem $y^{\prime}=x+y, y(0)=0$ by choosing $h=0.2$ and computing $y_{1}, y_{2}, \ldots, y_{5}$.

Section D

Answer any two questions. Each question carries 10 marks.
34. Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}+5 y=1.25 e^{0.5 x}+40 \cos 4 x-55 \sin 4 x, y(0)=0.2$ and $y^{\prime}(0)=60.1$
35. Using Laplace transforms solve $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-t} \sin t, y(0)=0, y^{\prime}(0)=1$
36. Find the Fourier series of the function $f(x)=\pi \sin \pi x, 0<x<1$ with period $2 p=1$.
37. Apply the Runge-Kutta method with $h=0.1$ to find $y(0.2)$ for the initial value problem $y^{\prime}=x+y^{2}$, $y(0)=1$.

