\qquad

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - UG)
(Regular/Supplementary/Improvement)
CC19U MTS4 C04 / CC20U MTS4 C04-MATHEMATICS - 4
(Mathematics - Core Course)
(2019 Admission onwards)

Part A (Short answer questions)
Answer all qestions. Each question carries 2 marks.

1. Verify that $x=k \sin 4 t$, where k is an arbitrary constant, is a solution of the linear differential equation $\frac{d^{2} y}{d x^{2}}+16 x=0$
2. Verify that $y=\frac{1}{x^{2}+c}$ is a one-parameter family of solutions of the first order differential equation $y^{\prime}+2 x y^{2}=0$. Find a solution of the initial value problem $y^{\prime}+2 x y^{2}=0, y(2)=\frac{1}{3}$.
3. Solve the initial value problem $\frac{d y}{d x}=\frac{-x}{y}, y(4)=-3$.
4. Find the general solution of $\frac{d y}{d x}+2 y=0$.
5. Define linear dependence and linear independence.
6. Solve $25 x^{2} y^{\prime \prime}+25 x y^{\prime}+y=0$.
7. If $f(t)=(t+1)^{3}$, find $\mathscr{L}\{f(t)\}$
8. State first shifting theorem. Use it to evaluate $\mathscr{L}\left\{\left(1-e^{t}+3 e^{-4 t}\right) \cos 4 t\right\}$
9. Find the convolution $4 t * 3 t^{2}$
10. Prove that the product of two odd functions is even.
11. Check whether the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial x \partial y}-3 \frac{\partial^{2} u}{\partial y^{2}}=0$ is hyperbolic, parabolic or elliptic.
12. Write the one-dimensional heat equation.
(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)
Answer all qestions. Each question carries 5 marks.
13. Solve $2 x y d x+\left(x^{2}-1\right) d y=0$.
14. Solve $t^{2} \frac{d y}{d t}+y^{2}=t y$.
15. Solve the initial value problem $y^{\prime \prime}+y^{\prime}+2 y=0, y(0)=0, y^{\prime}(0)=0$.
16. Find the general solution of $y^{\prime \prime}+y=\cos ^{2} x$ by using Variation of Parameters.
17. Evaluate $\mathscr{L}^{-1}\left(\frac{2 s-4}{\left(s^{2}+s\right)\left(s^{2}+1\right)}\right)$
18. Item If $f(t)$ is piecewise continuous on $[0, \infty)$ of exponential order and periodic with period T, prove that $\mathscr{L}\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t$
19. Using Laplace transforms solve the initial value problem $y^{\prime \prime}+5 y^{\prime}+4 y=0$ with $y(0)=1$ and $y^{\prime}(0)=0$
(Ceiling: 30 Marks)
Part C (Essay questions)
Answer any one question. The question carries 10 marks.
20. a) Solve the boundary value problem $y^{\prime \prime}+y=x^{2}+1, y(0)=5, y(1)=0$.
b) Solve $y^{\prime \prime}-6 y^{\prime}+9 y=6 x^{2}+2-12 e^{3 x}$
21. Find the Fourier series expansion of $f(x)=\left\{\begin{array}{lll}0, & \text { if } & -\frac{\pi}{2}<x<0 \\ \cos x, & \text { if } & 0 \leq x<\frac{\pi}{2}\end{array}\right.$

