20U460

(Pages: 2)

Name: Reg.No:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U STA4 C04 - STATISTICAL INFERENCE AND QUALITY CONTROL

(Statistics - Complementary Course)

(2019 Admission onwards)

Time: 2.00 Hours

Maximum : 60 Marks Credit : 3

Part A (Short answer questions) Answer *all* questions. Each question carries 2 marks.

- 1. Briefly explain the properties of a good estimator.
- 2. Define consistency.
- 3. $V(t_1) = 20.22$ and $V(t_2) = 12$. Compute the relative efficiency of t_2 with respect to t_1 .
- 4. What is sufficiency?
- 5. Explain interval estimation.
- 6. Define type I error.
- 7. Define Neymann Pearson lemma.
- 8. What is the critical region for testing the equality of population proportions?
- 9. Explain Small sample tests and large sample tests.
- 10. Define ANOVA.
- 11. Briefly explain Wilcoxon test.
- 12. Write down the control limits for p- chart.

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph) Answer *all* questions. Each question carries 5 marks.

- 13. Examine whether the sample variance is an unbiased estimator of the population variance for a normal population $N(\mu, \sigma)$.
- 14. If

 $\frac{e^{-\lambda}\lambda^{x}}{\lambda}$

 $f(x, \lambda) = \overline{x!}, \lambda > 0, x = 0, 1, 2...$, then estimate λ by the method of moments.

- 15. Explain the method of constructing 95% confidence interval for the proportion 'p' of possessing a characteristic in a population.
- 16. The nicotine content in mgms of two samples of tobacco are found as follows Sample I 24 27 24 23 25 Sample II 29 30 28 31 22 34

Can it be considered as samples from same normal population with equal variance.

- 17. Explain independence of attributes.
- 18. Explain median test.

19. The following data pertains to 6 samples of bolts tested for hardness.

	a.a p 0a			0.00		
Sample No.	Hardness rating					
1	47.1	47.2	47.2	48.1		
2	46.1	47.1	47.8	45.4		
3	45.0	44.1	44.1	44.3		
4	44.7	44.6	43.1	43.3		
5	45.9	45.7	46.1	44.5		
6	47.1	46.7	46.1	45.5		

Calculate the control limits for averages and ranges and draw mean and range chart.

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any *one* question. The question carries 10 marks.

20. (i) Define maximum likelihood estimator.State the properties of a maximum likelihood estimator.

(ii) Find the maximum likelihood estimator for

 θ based on

n observations for the frequency function

$$f(x, \theta) = \begin{cases} (1+\theta)x^{\theta}; \theta > 0, 0 < x < \theta\\ 0 \text{ elsewhere} \end{cases}$$

21. The following table gives the monthly sales (in thousand rupees) of a certain firm in three different states by four different salesmen.

States/Salesmen	W	X	Υ	Ζ
A	10	8	8	14
В	14	16	10	8
C	18	12	12	14

(1 × 10 = 10 Marks)

Processing math: 100%
