\qquad
Reg. No:
\qquad
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022
(CBCSS-UG)
CC19U MTS6 B13 - DIFFERENTIAL EQUATIONS
(Mathematics - Core Course)
(2019 Admission - Regular)
Time: $211 / 2$ Hours
Credit: 4

Section A

Answer all questions. Each question carries 2 marks.

1. Determine the order of the differential equation $\left(1+\mathrm{y}^{2}\right) \frac{d^{2} y}{d x^{2}}+\mathrm{x} \frac{d y}{d x}+\mathrm{y}=\mathrm{e}^{\mathrm{x}}$. Also state whether the equation is linear or non - linear.
2. Write down the general form of a separable differential equation. And show that every separable equation is exact.
3. Does the differential equation $\frac{d y}{d t}=\mathrm{y}$ has a solution passing through the point $(1,0)$?
4. Verify that the given functions are solutions of the differential equation $y^{\prime \prime}-y=0$
a) $y_{1}=e^{t}$
b) $y_{2}=\operatorname{cosht}$
5. Define the integrating factor of a differential equation. Show that $\mu(x)=x$ is an integrating factor of $\left(x^{2}-2 x+2 y^{2}\right) d x+2 x y d y=0$
6. Find wronskian of $y_{1}=\operatorname{sint}$ and $y_{2}=$ cost. Determine whether y_{1} and y_{2} are linearly independent.
7. Find a differential equation whose roots are $\mathrm{e}^{2 \mathrm{x}}$ and $\mathrm{e}^{3 \mathrm{x}}$
8. Solve the homogeneous linear differential equation $y^{\prime \prime}-4 y=0$
9. Find a general solution for the equation $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0, x>0$
10. Use the method of variation of parameters, solve the differential equation $y^{\prime \prime}+y=\sec x$
11. Define unit step function and write its Laplace transform
12. Find $\mathrm{L}^{-1}\left(\frac{s^{2}-3 s+4}{s^{3}}\right)$
13. Define fundamental period of a function. Find the fundamental period of $\sin 5 x$.
14. State whether the function $f(x)=x \cos x$ is even or odd.
15. Show that the function defined by $u(x, y)=\ln \left(x^{2}+y^{2}\right)$ is a solution of the following partial differential equation. $u_{x x}+u_{y y}=0$

Section B

Answer all questions. Each question carries 5 marks.
16. Solve the initial value problem $(y+2) d x+y(x+4) d y=0 ; y(-3)=-1$
17. Solve: $2 x^{2} y y^{\prime}=\tan \left(x^{2} y^{2}\right)-2 x y^{2}$
18. Make the following equation exact and hence solve $y d x+\left(x^{2} y-x\right) d y=0$
19. Using the method of reduction of order solve the differential equation $t^{2} y "-5 t y ’+9 y=$ $0, t>0$, given that $y=t^{3}$ is a solution.
20. Prove that $\mathrm{L}\left(\mathrm{t}^{\mathrm{n}}\right)=\frac{n!}{s^{n+1}}$
21. Find the inverse Laplace transform of the function $\mathrm{f}(\mathrm{t})=\frac{3 s+1}{(s-1)\left(s^{2}+1\right)}$
22. Using convolution find the inverse Laplace Transform of the function $\frac{1}{s\left(s^{2}+\omega^{2}\right)}$
23. Obtain the Fourier half range cosine series for the function $f(x)=x$ for $x \in[0, \pi]$.
(Ceiling: 35 Marks)

Section C

Answer any two questions. Each question carries 10 marks.
24. Solve the differential equation $(2 x-4 y+5) y^{\prime}+x-2 y+3=0$
25. Solve $y^{\prime \prime}+2 y^{\prime}-35 y=12 e^{5 t}+37 \sin 5 t$
26. Solve using Laplace Transform: $y^{\prime \prime}-3 y^{\prime}+2 y=4 e 2 t, y(0)=-3, y^{\prime}(0)=5$
27. Find the Fourier series expansion of the function $\mathrm{f}(\mathrm{x})$, which is periodic with period 2π and which in $-\pi<x<\pi$ is given by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}x, 0 \leq x \leq \pi \\ 2 \pi-x, \pi \leq x \leq 2 \pi\end{array}\right.$

$$
(2 \times 10=20 \text { Marks })
$$

