Name: \qquad
Reg. No:
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022
(CUCBCSS-UG)
CC15U MAT6 B09 / CC18U MAT6 B09 - REAL ANALYSIS
(Mathematics - Core Course)
(2016 to 2018 Admissions - Supplementary/Improvement)
Time: Three Hours
Maximum: 120 Marks

Part-A

Answer all questions. Each question carries 1 mark.

1. State boundedness theorem.
2. State true or false: Continuous functions are always bounded.
3. Does the function $g(x)=x^{3}-3 x$ has a root in $[1,2]$?
4. Give an example of a continuous function which is not uniformly continuous.
5. Calculate the norm of the partition $\mathcal{p}=(0,1,2,4)$.
6. Show that every constant function is Riemann integrable.
7. Find $\lim \left(\frac{x^{2}+n x}{n}\right)$.
8. Define uniform convergence of a sequence of functions $\left\{f_{n}(x)\right\}$.
9. Find the radius of convergence of $\sum x^{n}$.
10. Give an example of a second kind improper integral.
11. Define Beta function.
12. What is the value of $\Gamma\left(\frac{1}{2}\right)$?

Part-B

Answer any ten questions. Each question carries 4 marks.
13. Define absolute maximum point and absolute minimum point for $f: A \rightarrow \mathbb{R} ; A \subseteq \mathbb{R}$
14. Define Lipschitz function. Prove that a Lipschitz function $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A.
15. Show that $g(x)=\frac{1}{x}$ is uniformly continuous on $A=\{x \in R: 1 \leq x \leq 2\}$.
16. Define Riemann sum and Riemann integral of a function f on an interval $[a, b]$ corresponding to a tagged partition $\dot{\mathcal{P}}$.
17. If $f, g \in R[a, b]$, show that $f+g \in R[a, b]$, and $\int_{a}^{b} f+g=\int_{a}^{b} f+\int_{a}^{b} g$.
18. State substitution theorem for Riemann integration. Use it to evaluate $\int_{1}^{4} \frac{\cos \sqrt{ } t}{\sqrt{ } t} d t$.
19. Use the fundamental theorem of calculus to evaluate $\int_{2}^{5}\left(2 x^{2}+3 x+1\right) d x$.
20. Discuss the pointwise convergence of the sequence of functions $\left(x^{n}\right)$.
21. State and prove Weierstrass M- Test for a series of functions.
22. Test the convergence of $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$.
23. Find $\int_{0}^{2}\left(8-x^{3}\right)^{\frac{-1}{3}} d x$
24. Express $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$ in terms of Beta function.
25. Show that $\beta(m, n)=\int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} d y$.
26. Evaluate $\int_{0}^{\frac{\pi}{2}} \operatorname{Sin}^{7} \theta \operatorname{Cos}^{5} \theta d \theta$.

Part-C

Answer any six questions. Each question carries 7 marks.
27. If f and g are uniformly continuous on a subset A of \mathbb{R}, then prove that $f+g$ is uniformly continuous on A.
28. Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. Then prove that $f(I)$ is an interval.
29. Let $f(x)=x, x \in[0,1]$. Show that $f \in R[a, b]$.
30. If $f:[a, b] \rightarrow \mathbb{R}$ is monotone on $[a, b]$, then show that $f \in R[a, b]$.
31. State and prove Squeeze theorem of Riemann integrable functions.
32. State and prove Cauchy criterion for the uniform convergence of the sequence of functions.
33. Define Cauchy principal value of $\int_{-\infty}^{\infty} f(x) d x$. Also evaluate it for $\int_{-\infty}^{\infty} \operatorname{Sin} x d x$.
34. Show that $\int_{a}^{\infty} \frac{1}{x^{p}} d x, a>0$ converges if $p>1$ and diverges if $p \leq 1$.
35. Show that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.

$$
\text { (} 6 \times 7=42 \text { Marks })
$$

Part-D

Answer any two questions. Each question carries 13 marks.
36. (a) State and prove intermediate value theorem.
(b) Prove that $\sin x$ is uniformly continuous on $[0, \infty)$.
37. (a) Define indefinite integral of f where $f \in R[a, b]$ with a base point a.
(b) State and prove fundamental theorem of calculus (Second form).
38. (a) Find the value of $\int_{2}^{3}(x-2)^{2}(3-x)^{3} d x$.
(b) Check the integrability of Dirichlet function.
($2 \times 13=26$ Marks)

