\qquad
\qquad

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022

 (CUCBCSS-UG)CC15U MAT6 B10/ CC18U MAT6 B10 - COMPLEX ANALYSIS
(Mathematics - Core Course)
(2015 to 2018 Admissions - Supplementary/Improvement)
Time: 3 Hours

Section A

Answer all questions. Each question carries 1 mark.

1. What is the imaginary part of $f(z)=z^{2}$?
2. What do you meant by an entire function?
3. Express Cauchy-Riemann equations in polar form.
4. The value of $e^{i \pi}=\ldots$.
5. $\sin (i y)=\ldots$.
6. $\log (-e i)=\ldots$.
7. Parametrize the unit circle $|z|=1$.
8. Give an example for a simply connected domain.
9. The region of convergence of the power series $1+z+z^{2}+\ldots$ is $\ldots \ldots$
10. Evaluate $\oint_{|z|=1} \frac{z^{2}+4}{z-2} d z$
11. For the function $f(z)=\frac{1-\cosh z}{z^{4}}, z=0$ is a pole of order \ldots.
12. If $f(z)=\frac{2}{(z-1)(z+4)}$, find residue of $f(z)$ at $z=1$.

Section B

Answer any ten questions. Each question carries 4 marks.
13. Prove that if $f(z)$ is differentiable at z_{0} then it is continuous at z_{0}.
14. Show that $f(z)=\bar{z}$ is nowhere analytic.
15. Suppose the function $f(z)=u+i v$ is analytic in a domain D. Prove that u and v are harmonic in D.
16. Find all values of z so that $e^{z}=-2$.
17. Prove that $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y$.
18. Find the principal value of $(-i)^{i}$
19. Evaluate $\int_{C} \bar{z} d z$ where C is the right hand half of the circle $|z|=2$ from $z=-2 i$ to $z=2 i$.
20. Evaluate $\int_{C} \frac{1}{z} d z$ where C is the circle $|z|=\frac{1}{2}$.
21. State and prove Cauchy's inequality.
22. Prove that $\sum_{n=0}^{\infty} \frac{(3-4 i)^{n}}{n!}$ is absolutely convergent.
23. Obtain a Taylor series representation of $f(z)=\frac{1}{z}$ about $z=1$.
24. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n!z^{n}}{n^{n}}$
25. What are the singular points of the function $f(z)=\frac{1}{\sin (\pi / z)}$? Give its classification.
26. Find the residue at all the singular points of the function $f(z)=\cot z$.
(10 $\times 4=40$ Marks)

Section C

Answer any six questions. Each question carries 7 marks.
27. Derive Cauchy-Riemann equations with necessary assumptions.
28. Show that the function $u(x, y)=4 x y-x^{3}+3 x y^{2}$ is harmonic. Find the harmonic conjugate and the most general analytic function $f(z)$ with u as real component.
29. By taking $z_{1}=z_{2}=-1$, verify $\log z_{1} z_{2}=\log z_{1}+\log z_{2}$. Is the property valid if we replace $\log z$ by the principal branch $\log z$?
30. State and prove $M L$-inequality. Without evaluating the integral show that $\left|\int_{C} \frac{d z}{z^{2}-1}\right| \leq \frac{\pi}{3}$ where C be arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ lying in the first quadrant.
31. Evaluate $\int_{C} \frac{1}{z \sin z} d z$ where C is the unit circle $|z|=1$ oriented in the positive direction.
32. State and prove fundamental theorem of algebra.
33. Show that the power series $\sum_{n=1}^{\infty} n a_{n} z^{n-1}$ obtained by differentiating the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ term by term has the same radius of convergence as the original series.
34. State and prove Cauchy's residue theorem. Using residue theorem, evaluate $\int_{C} \frac{1}{z^{3}(z+4)} d z$ where C is the circle $|z|=2$.
35. Using residue theorem evaluate $\int_{0}^{2 \pi} \frac{1}{13-5 \sin \theta} d \theta$

Section D

Answer any two questions. Each question carries 13 marks.
36. State and prove Cauchy's integral formula.
37. Find all Laurent series representations of the function $f(z)=\frac{1}{1-z^{2}}$ with center at $z=1$.
38. Evaluate the improper integral $\int_{0}^{\infty} \frac{1}{x^{4}+1} d x$

