$\qquad$

# SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022 (CUCBCSS-UG) <br> <br> CC18U MAT6 B12 - NUMBER THEORY AND LINEAR ALGEBRA <br> <br> CC18U MAT6 B12 - NUMBER THEORY AND LINEAR ALGEBRA <br> (Mathematics - Core Course) <br> (2018 Admission - Supplementary/Improvement) <br> Maximum: 120 Marks 

Time: 3 Hours

## Section A

Answer all questions. Each question carries 1 mark.

1. Express 270 in canoincal form
2. Find gcd of the numbers 270 and 348 .
3. Define Euler's phi function.
4. Write the remainder when 22 ! is divided by 23 .
5. Write the dimension of the space of $2 \times 2$ matrices over the field $\mathbb{R}$.
6. Write a basis of the polynomials of degree $\leq 4$ over the field $\mathbb{R}$.
7. Write a proper, non-trival subspace of $\mathbb{R}^{2}$ over $\mathbb{R}$.
8. Find the number of divisors of 720 .
9. What is Euclid's lemma?
10. Write a map $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not linear.
11. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $f(x, y)=x+y$, for $x, y \in \mathbb{R}$, then find $\operatorname{ker} f$.
12. Give a vector space which is isomorphic to $\mathbb{R}^{4}$ over $\mathbb{R}$.

## Section B

Answer any ten question. Each question carries 4 marks.
13. Find the gcd of the numbers 36 and 84 and express it as a linear combination of 36 and 84 .
14. Prove or disprove :There exist infinitely many primes.
15. Find $\operatorname{img} f$, where $f$ is the derivative map from $\mathbb{R}_{2}[X]$ to $\mathbb{R}_{2}[X]$.
16. Let V and W be two vector spaces over the field F and let $f$ be an injective linear map from V to W . Prove or disprove: If $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a linearly indepedent subset of V , then $\left\{f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right\}$ is a linearly independent subset of W.
17. Check whether $(2,3,4)$ and $(1,2,3)$ are linearly independent in $\mathbb{R}^{3}$ over $\mathbb{R}$.
18. Find the number and sum of divisors of 820 .
19. Show that the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}_{2}[X]$ given by $f(a, b)=a^{2}+b x$ is not a linear.
20. If $p$ is a prime and $\left.p\right|_{a b}$, then prove that $\left.p\right|_{a}$ or $\left.p\right|_{b}$.
21. If V has a finite basis, then prove that all linearly independent subsets of V are finite.
22. Prove that the intersection of any two subspaces of a vector space is again a vector space.
23. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $f(a, b)=(b, 0)$, then prove that $\operatorname{ker} f=\operatorname{img} f$
24. If p is prime number and $k>0$, then prove that $\phi\left(p^{k}\right)=p^{k}\left(1-\frac{1}{p}\right)$.
25. Is the converse of Fermat's little theorem true? Justify.
26. Define dimension of a vector space. Give example of a vector space of infinite dimension.
(10×4=40 Marks)

## Section C

Answer any six question. Each question carries 7 marks.
27. Use congruency theory to establish that 7 divides $5^{2 n}-3 \times 2^{5 n-2}$ for any natural number $n$.
28. Solve the congruence

$$
\begin{aligned}
x & \equiv 2(\bmod 3) \\
x & \equiv 3(\bmod 5) \\
x & \equiv 2(\bmod 7)
\end{aligned}
$$

29. State and prove Wilson's Theorem.
30. Prove or disprove : Set of all $2 \times 2$ upper triangular matrices is a subspace of the set of all $2 \times 2$ matrices over $\mathbb{R}$
31. Using congruences, solve the Diophantine equation, $56 x+72 y=40$
32. State and prove Fermat's little theorem.
33. Show that a linear map $f: U \rightarrow V$ is injective if and only if $\operatorname{ker} f=\left\{0_{v}\right\}$.
34. Solve the linear congruence $36 x \equiv 8(\bmod 102)$.

## Section D

Answer any two question. Each question carries 13 marks.
35. State and prove Dimension Theorem
36. State and prove the Fundamental Theorem of Arithmetic.
37. Solve the linear congruences

$$
17 x \equiv 9(\bmod 276)
$$

