(Pages: 2)

Name:
Reg. No

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022 (CBCSS-UG)

CC19U MTS6 B10 - REAL ANALYSIS

(Mathematics - Core Course) (2019 Admission - Regular)

Time: 2 ¹/₂ Hours

Maximum: 80 Marks Credit: 5

Section A

Answer *all* questions. Each question carries 2 marks.

- 1. Give an example of a function which is continuous on a set but don't have an absolute maximum on that set.
- 2. State Preservation of intervals theorem.
- 3. Show that a Lipschitz function is uniformly continuous.
- 4. State non uniform continuity criteria.
- 5. Show that $f(x) = \frac{1}{x}$ is not uniformly continuous on [0, 1]
- 6. Define norm of a partition. Find the norm of $\{0, \frac{1}{4}, \frac{1}{2}, 1, 2\}$ of [0, 2].
- 7. Find $S(f; \dot{P})$ where $f(x) = x^2$ on [0, 1] and \dot{P} is a partition which divides [0, 1] into four equal parts and tags are chosen to be the left end points.
- 8. State the Fundamental theorem of Calculus (first form).
- 9. Give an antiderivative of the *signum* function in [-5, 5].
- 10. Find $\int_0^2 t^2 \sqrt{1+t^3} dt$ with proper justifications.
- 11. Find $\lim_{n \to \infty} \frac{\sin nx}{1+nx}$

12. Test for convergence the series $\frac{1}{3} + \frac{\sqrt{2}}{5} + \frac{\sqrt{3}}{7} + \frac{\sqrt{5}}{9} + \cdots$

- 13. Define absolutely convergent improper integral with an example.
- 14. Prove that Beta function is symmetric.
- 15. Prove that $\Gamma(p + 1) = p \Gamma(p)$ for all p > 0.

(Ceiling: 25 Marks)

Section B

Answer *all* questions. Each question carries 5 marks.

16. State and prove boundedness theorem on continuous functions.

17. If $f: [0, 1] \rightarrow [0, 1]$ is continuous, then show that f(x) = x for at least one x in [0, 1].

18. Show that if $f \in \mathcal{R}[a, b]$, then $kf \in \mathcal{R}[a, b]$ and $\int_a^b kf = k \int_a^b f$

19U601

- 19. State and prove Squeeze theorem.
- 20. Test for Uniform convergence, the sequence $\{e^{-nx}\}$ for $x \ge 0$.
- 21. State and prove Cauchy criterion for uniform convergence of sequence of functions.
- 22. Find the Cauchy Principal Value of the improper integral $\int_{-1}^{5} \frac{dx}{(x-1)^3}$
- 23. Find the relation connecting Beta and Gamma functions.

(Ceiling: 35 Marks)

Section C

Answer any *two* questions. Each question carries 10 marks.

- 24. State and prove:
 - (a) Location of Roots theorem.
 - (b) Bolzano's intermediate value theorem.
- 25. State and prove Additivity Theorem.
- 26. Discuss in detail, the convergence of p series.
- 27. Prove that, the series $S_n(x) = nx(1-x)^n$ can be integrated term by term in

 $0 \le x \le 1$ although it is not uniformly convergent in that interval.

 $(2 \times 10 = 20 \text{ Marks})$
