Name: \qquad Reg. No. \qquad SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS-UG) CC19U MTS6 B10 - REAL ANALYSIS
 (Mathematics - Core Course)
 (2019 Admission - Regular)

Time: $211 / 2$ Hours
Credit: 5

Section A

Answer all questions. Each question carries 2 marks.

1. Give an example of a function which is continuous on a set but don't have an absolute maximum on that set.
2. State Preservation of intervals theorem.
3. Show that a Lipschitz function is uniformly continuous.
4. State non uniform continuity criteria.
5. Show that $f(x)=1 / x$ is not uniformly continuous on $[0,1]$
6. Define norm of a partition. Find the norm of $\{0,1 / 4,1 / 2,1,2\}$ of $[0,2]$.
7. Find $S(f ; \dot{P})$ where $f(x)=x^{2}$ on $[0,1]$ and \dot{P} is a partition which divides $[0,1]$ into four equal parts and tags are chosen to be the left end points.
8. State the Fundamental theorem of Calculus (first form).
9. Give an antiderivative of the signum function in $[-5,5]$.
10. Find $\int_{0}^{2} t^{2} \sqrt{1+t^{3}} d t$ with proper justifications.
11. Find $\lim _{n \rightarrow \infty} \frac{\sin n x}{1+n x}$
12. Test for convergence the series $\frac{1}{3}+\frac{\sqrt{2}}{5}+\frac{\sqrt{3}}{7}+\frac{\sqrt{5}}{9}+\cdots$
13. Define absolutely convergent improper integral with an example.
14. Prove that Beta function is symmetric.
15. Prove that $\Gamma(p+1)=p \Gamma(p)$ for all $p>0$.
(Ceiling: $\mathbf{2 5}$ Marks)

Section B

Answer all questions. Each question carries 5 marks.
16. State and prove boundedness theorem on continuous functions.
17. If $f:[0,1] \rightarrow[0,1]$ is continuous, then show that $f(x)=x$ for at least one x in $[0,1]$.
18. Show that if $f \in \mathcal{R}[a, b]$, then $k f \in \mathcal{R}[a, b]$ and $\int_{a}^{b} k f=k \int_{a}^{b} f$
19. State and prove Squeeze theorem.
20. Test for Uniform convergence, the sequence $\left\{e^{-n x}\right\}$ for $x \geq 0$.
21. State and prove Cauchy criterion for uniform convergence of sequence of functions.
22. Find the Cauchy Principal Value of the improper integral $\int_{-1}^{5} \frac{d x}{(x-1)^{3}}$
23. Find the relation connecting Beta and Gamma functions.
(Ceiling: 35 Marks)

Section C

Answer any two questions. Each question carries 10 marks.
24. State and prove:
(a) Location of Roots theorem.
(b) Bolzano's intermediate value theorem.
25. State and prove Additivity Theorem.
26. Discuss in detail, the convergence of $p-$ series.
27. Prove that, the series $S_{n}(x)=n x(1-x)^{n}$ can be integrated term by term in $0 \leq x \leq 1$ although it is not uniformly convergent in that interval.

$$
(2 \times 10=20 \text { Marks })
$$

