21P210

(Pages: 2)

Name:

Reg.No:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P CHE2 C05 - GROUP THEORY AND CHEMICAL BONDING

(Chemistry)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Section A

Answer any *eight* questions. Each question carries 1 weightage.

1. Which sets of elements have to be added to convert C_{nh} point group into D_{nh}? Explain.

2. What are orthogonal matrices? What are its properties?

- 3. Write down the 3 \times 3 matrices corresponding to all symmetry operations in C_{2v} point group
- 4. Using the reduction formula reduce, reducible following representations, Γ_a and Γ_b of C_{3v} point group nto irreducible representation of the point group.

C _{3v}	Е	2C ₃	3σ
A ₁	1	1	1
A ₂	1	1	-1
Е	2	-1	0
Га	5	2	-1
Гь	7	1	-1

- 5. Find the symmetries of rotational vectors R_x and R_z in C_{2h} point group.
- 6. What is inverse transformation procedure?
- 7. Explain what is meant by a trial function?
- 8. What is the major difference between MOT and VBT in considering the electronic arrangement of molecules?
- 9. Calculate the electron densities on the carbons in allyl anion.
- 10. Give the trial functions for sp, sp^2 and sp^3 hybridizations.

 $(8 \times 1 = 8 \text{ Weightage})$

Section **B**

Answer any *four* questions. Each question carries 3 weightage.

- 11. (i) What are the rules to be obeyed for a set of elements to form a mathematical group? (ii) Show that all integers from -∞ to +∞ through zero form a mathematical group.
- 12. What meaning is implied in the Mulliken symbols A_{g} , B_{u} and Bg in C_{2h} point group?
- 13. Sketch the normal modes of ammonia molecule. Depict the transformation of these normal modes under each symmetry operation and assign symmetries to each normal mode.
- 14. How do you explain Laporte selection rule using group theory?
- 15. HCHO belongs to C_{2v} point group. Find the symmetry species of MO's. (You may neglect S-orbitals)
- 16. State the variation theorem. Explain in general the LCAO method for the combination of two AOs.

 $(4 \times 3 = 12 \text{ Weightage})$

Section C

Answer any *two* questions. Each question carries 5 weightage.

- 17. Sate Great Orthogonality Theorem. What are its consequences? Using this derive the C_{4V} character table.
- By fixing three cartesian coordinates on each atom, find out the symmetries of vibrational modes of trans-N₂F₂. Find IR and Raman activities of fundamental vibrational modes and prove the rule of mutual exclusion.
- 19. Using projection operator method construct MO for $C_3H_3^+$
- 20. Compare VB and MO treatments for explaining the bonding in H₂ molecule.

 $(2 \times 5 = 10 \text{ Weightage})$
